Size | Price | Stock | Qty |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Pyrvinium is an FDA-approved antihelmintic drug for pinworms, it inhibits WNT pathway signaling. Pyrvinium pamoate (PP), inhibited proliferation of different subtypes of breast cancer cells (luminal: MCF-7, claudin-low: MDA-MB‑231, basal-like: MDA-MB‑468 and Her-2 enriched: SkBr-3) as a novel WNT pathway inhibitor. Additionally, PP was also shown to inhibit self-renewal of breast cancer stem cells (BCSCs) and decrease both CD44+CD24-/low and ALDH-positive BCSCs content in a panel of breast cancer cell lines. Besides, the metastatic potential and expression of EMT markers (such as N-cadherin, vimentin, Snail) were also found suppressed by PP. By using a xenograft model, we next tested the efficacy of PP on tumorigenicity of MDA-MB‑231, one of the most aggressive breast cancer cell lines, and we observed PP significantly delayed tumor growth in vivo. Moreover, in-depth analysis revealed that PP caused inhibition of WNT pathway activity and stemness regulator expression including NANOG, SOX2 and OCT4, which were inherently upregulated in the BCSCs as compared with the bulk of cells within the tumor. Collectively, our findings provide direct evidence for PP serving as a promising high-yield agent targeting BCSCs and cancer heterogeneity. Therefore, strategies combining PP with standard chemotherapy drugs which fail to eliminate the BCSCs hold promise to overcome BCSCs associated treatment resistance and achieve a better therapeutic outcome.
ln Vitro |
MCF-7 (luminal), MDA-MB-231 (claudin-low), MDA-MB-468 (basal-like), and SkBr3 (HER2-OE) cells are all inhibited by pyrvinium pamoate (0-500 nM) in a dose-dependent manner. The MDA-MB-231 cell line's IC50 value is 1170±105.0 nM. Pividin pamoate produces BCSC populations with distinct characteristics by strongly inhibiting BCSC self-renewal and duplication. At the topological level, pividin pamoate dramatically decreased the average expression levels of FZD1, FZD10, WNT1, WNT7B, CTNNB1, MYC, and LRP5. Additionally, ALDH1, CD44, and ABCG2 expression are among the other stemness genes whose expression is successfully rearranged by pyrvinium pamoate[1]. Pyrvinium pamoate exhibits dose-dependent inhibition of the circular waveform (IC50), with a broad range of inhibitory concentrations (0.6 - 65 μM) observed for the WNT signal's circular waveform. While pyrvinium pamoate does not harm CK1, it eventually suppresses Wnt signaling by reducing the messenger RNA (mRNA) of known WNT target genes, such as c-MYC [3]. Cardiovascular heart-forming fibroblasts are susceptible to the amplitude toxicity of pamoic acid (IC50=9.5 nM). Piravinium pamoate's cytotoxic effects on cardiac fibroblasts in the presence of glutamine deficit and yogurt [4].
|
---|---|
ln Vivo |
Pyrvinium pamoate (500 nM) significantly reduced tumor volume, tumor size and weight, and severe tumor retardation in xenograft models [1].
|
References |
|
Additional Infomation |
Pyrvinium pamoate appears as odorless bright orange or orange-red to brownish red or almost black fluffy powder. Melting point 210-215 °C. Insoluble in water. Tasteless.
Pyrvinium pamoate is a naphthoic acid. It has a role as an anticoronaviral agent. Pyrvinium Pamoate is the pamoate salt of pyrvinium, a quinoline-derived cyanine dye and an mitochondrial oxidative phosphorylation (OxPhos) inhibitor, with anthelmintic and potential antineoplastic activities. Upon administration, pyrvinium pamoate may inhibit mitochondrial OxPhos and mitochondrial respiration, decreases mitochondrial function, prevents tumor cell metabolism and deprives tumor cells of energy, thereby preventing tumor cell proliferation and leading to tumor cell death in some types of cancer cells. Mitochondrial OxPhos is overactivated in cancer cells and plays a key role in tumor cell proliferation. Drug resistant tumor cells are very susceptible to decreased mitochondrial OxPhos as they cannot easily compensate for the decrease in mitochondrial function by increasing glycolysis. See also: Pyrvinium (has active moiety). |
Molecular Formula |
C75H70N6O6
|
|
---|---|---|
Molecular Weight |
1151.39
|
|
Exact Mass |
1150.535
|
|
CAS # |
3546-41-6
|
|
Related CAS # |
110-85-0 (cation);142-88-1 (adipate);3546-41-6 (pamoate); 548-84-5 (Cl); 35648-29-4 (Iodide);
|
|
PubChem CID |
54680693
|
|
Appearance |
Red to reddish brown solid powder
|
|
Density |
1.0104 (rough estimate)
|
|
Boiling Point |
829.27°C (rough estimate)
|
|
Melting Point |
210-215° (softens at 190°)
|
|
Index of Refraction |
1.6400 (estimate)
|
|
LogP |
12.338
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
8
|
|
Rotatable Bond Count |
12
|
|
Heavy Atom Count |
87
|
|
Complexity |
1120
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
CC1=CC(=C(N1C2=CC=CC=C2)C)/C=C/C3=[N+](C4=C(C=C(C=C4)N(C)C)C=C3)C.CC1=CC(=C(N1C2=CC=CC=C2)C)/C=C/C3=[N+](C4=C(C=C(C=C4)N(C)C)C=C3)C.C1=CC=C2C(=C(C(=CC2=C1)C(=O)O)[O-])CC3=C(C(=CC4=CC=CC=C34)C(=O)O)[O-]
|
|
InChi Key |
OOPDAHSJBRZRPH-UHFFFAOYSA-L
|
|
InChi Code |
InChI=1S/2C26H28N3.C23H16O6/c2*1-19-17-21(20(2)29(19)24-9-7-6-8-10-24)11-13-23-14-12-22-18-25(27(3)4)15-16-26(22)28(23)5;24-20-16(14-7-3-1-5-12(14)9-18(20)22(26)27)11-17-15-8-4-2-6-13(15)10-19(21(17)25)23(28)29/h2*6-18H,1-5H3;1-10,24-25H,11H2,(H,26,27)(H,28,29)/q2*+1;/p-2
|
|
Chemical Name |
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: (1). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. (2). This product is not stable in solution, please use freshly prepared working solution for optimal results. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.8685 mL | 4.3426 mL | 8.6852 mL | |
5 mM | 0.1737 mL | 0.8685 mL | 1.7370 mL | |
10 mM | 0.0869 mL | 0.4343 mL | 0.8685 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.