yingweiwo

Regorafenib (BAY73-4506)

Alias: BAY-734506; BAY734506; BAY 734506; Regorafenib. Brand name: Stivarga
Cat No.:V0048 Purity: ≥98%
Regorafenib (also known as BAY 73-4506; BAY-73-4506) is a potent andorally bioavailable multi-kinase inhibitor of VEGFR1, VEGFR2, VEGFR3, PDGFRβ, Kit, RET and Raf-1 with IC50 values of 13 nM/4.2 nM/46 nM, 22 nM, 7 nM, 1.5 nM and 2.5 nM in cell-free assays, respectively.
Regorafenib (BAY73-4506)
Regorafenib (BAY73-4506) Chemical Structure CAS No.: 755037-03-7
Product category: c-RET
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
5g
Other Sizes

Other Forms of Regorafenib (BAY73-4506):

  • Regorafenib monohydrate (BAY73-4506)
  • Regorafenib D3
  • Regorafenib HCl (BAY-73-4506)
  • Regorafenib mesylate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Regorafenib (also known as BAY 73-4506; BAY-73-4506) is a potent and orally bioavailable multi-kinase inhibitor of VEGFR1, VEGFR2, VEGFR3, PDGFRβ, Kit, RET and Raf-1 with IC50 values of 13 nM/4.2 nM/46 nM, 22 nM, 7 nM, 1.5 nM and 2.5 nM in cell-free assays, respectively. It has antitumor properties and was given FDA approval to treat liver cancer.

Biological Activity I Assay Protocols (From Reference)
Targets
Raf-1 (IC50 = 2.5 nM); Tie2 (IC50 = 311 ± 46 nM); VEGFR2 (IC50 = 4.2 nM); VEGFR1 (IC50 = 13 nM); VEGFR2 (IC50 = 4.2 nM); BRafV600E (IC50 = 19 nM); PDGFRβ (IC50 = 22 nM); Braf (IC50 = 28 nM); VEGFR3 (IC50 = 46 nM)
ln Vitro
Regorafenib (0-10 μM, 96 h) exhibits anti-proliferation activity in GIST 882, Thyroid TT, MDA-MB-231, HepG2, A375, and SW620 cells[1].
Regorafenib (0–3000 nM, 30 min) inhibits FGFR and pERK1/2 as well as the autophosphorylation of VEGFR2, TIE2, and PDGFR-β.
Regorafenib has an IC50 of 5 μM and inhibits Hep3B cell growth in a concentration-dependent manner. Regorafenib then elevates phospho-c-Jun levels in Hep3B cells, a JNK target, but not total c-Jun levels[3].
ln Vivo
Regorafenib (10 mg/kg, Orally, once or twice daily for 4 days) inhibits tumor growth and tumor vasculature in a rat GS9L glioblastoma model[1].
Regorafenib (0-100 mg/kg, Orally, qd × 9) exhibits antitumorigenic and antiangiogenic effects in the Colo-205, MDA-MB-231 and 786-O model[1].
Enzyme Assay
In vitro assays using recombinant VEGFR2 (murine aa785–aa1367), VEGFR3 (murine aa818–aa1363), PDGFRβ (aa561–aa1106), Raf-1 (aa305–aa648) and BRafV600E (aa409–aa765) kinase domains are performed. At a constant 1 μM Regorafenib concentration, the initial in vitro kinase inhibition profiling is carried out. Select responding kinases, such as VEGFR1 and RET, are used to calculate the 50% inhibitory concentration (IC50) values. Using a recombinant fusion protein of glutathione-S-transferase, the intracellular domain of TIE2, and the peptide biotin-Ahx-EPKDDAYPLYSDFG as substrate, the homogeneous time-resolved fluorescence (HTRF) assay is used to measure TIE2 kinase inhibition.
Cell Assay
For proliferation tests, GIST 882 and TT cells are grown in RPMI medium with L-glutamine, while MDA-MB-231, HepG2, and A375 cells are grown in DMEM that is always supplemented with 10% high-fat b-casein sulfate. Trypsinized cells are plated at 5×104 cells per well in 96-well plates with complete media containing 10% FBS, and grown overnight at 37 °C. The incubation is continued for another 96 hours with the addition of vehicle or Regorafenib, serially diluted in complete growth media to final concentrations between 10 μM and 5 nM, and 0.2% DMSO. You can measure cell proliferation.
Animal Protocol
Female athymic NCr nu/nu mice with Colo-205, MDA-MB-231 or 786-O
3 mg/kg, 10 mg/kg, 30 mg/kg, 100 mg/kg
Orally
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Cmax = 2.5 μg/mL; Tmax = 4 hours; AUC = 70.4 μg*h/mL; Cmax, steady-state = 3.9 μg/mL; AUC, steady-state = 58.3 μg*h/mL; The mean relative bioavailability of tablets compared to an oral solution is 69% to 83%.
Approximately 71% of a radiolabeled dose was excreted in feces (47% as parent compound, 24% as metabolites) and 19% of the dose was excreted in urine (17% as glucuronides) within 12 days after administration of a radiolabeled oral solution at a dose of 120 mg.
Regorafenib undergoes enterohepatic circulation with multiple plasma concentration peaks observed across the 24-hour dosing interval.
Metabolism / Metabolites
Regorafenib is metabolized by CYP3A4 and UGT1A9. The main circulating metabolites of regorafenib measured at steady-state in human plasma are M-2 (N-oxide) and M-5 (N-oxide and N-desmethyl), both of them having similar in vitro pharmacological activity and steady-state concentrations as regorafenib. M-2 and M-5 are highly protein bound (99.8% and 99.95%, respectively). Regorafenib is an inhibitor of P-glycoprotein, while its active metabolites M-2 (N-oxide) and M-5 (N-oxide and N-desmethyl) are substrates of P-glycoprotein.
Biological Half-Life
Regorafenib, 160 mg oral dose = 28 hours (14 - 58 hours); M2 metabolite, 160 mg oral dose = 25 hours (14-32 hours); M5 metabolite, 160 mg oral dose = 51 hours (32-72 hours);
Toxicity/Toxicokinetics
Hepatotoxicity
In large clinical trials of regorafenib, elevations in serum aminotransferase levels were common, occurring in 39% to 45% of patients, and were greater than 5 times the upper limit of normal (ULN) in 3% to 6%. In addition, there have been several reports of clinically apparent liver injury arising during regorafenib therapy which was often severe and occasionally fatal, estimated to occur in 0.3% of treated subjects. For these reasons, routine monitoring of liver enzymes is recommended. Regorafenib induced liver injury can present in several different patterns or phenotypes. Some patients present within a few days of starting regorafenib with acute hepatic necrosis, high levels of serum aminotransferase and lactic dehydrogenase with mild jaundice, but prolongation of INR and signs of hepatic failure. The injury can be severe but is generally self-limited and recovery is rapid and complete. Other patients present with an acute viral hepatitis like pattern, hepatocelllar (or mixed) serum enzyme elevations and jaundice that can be prolonged and has been fatal in several instances. Autoimmune and immunoallergic features are uncommon. In addition, rare instances of regorafenib associated liver injury have presented with a sinusoidal obstruction-like syndrome or pseudocirrhosis, with marked hepatic nodularity and ascites that eventually improves or resolves. Finally, regorafenib, like other multi-kinase inhibitors [sunitinib, imatinib, sorafenib], has also been associated with episodes of hyperammonemic coma generally arising within a few days or weeks of starting and with rapid reversal upon stopping treatment.
Likelihood score: B (highly likely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of regorafenib during breastfeeding. Because regorafenib is 99.5% bound to plasma proteins, the amount in milk is likely to be low. However, one of its metabolites has a half-life of up to 70 hours, and might accumulate in the infant. The manufacturer recommends that breastfeeding be discontinued during regorafenib therapy and for 2 weeks after the final dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Regorafenib is highly bound (99.5%) to human plasma proteins.
References

[1]. Int J Cancer . 2011 Jul 1;129(1):245-55.

[2]. Ther Adv Med Oncol . 2010 Jan;2(1):39-49.

[3]. J Cell Physiol . 2013 Feb;228(2):292-7.

Additional Infomation
Regorafenib is a pyridinecarboxamide obtained by condensation of 4-[4-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)-3-fluorophenoxy]pyridine-2-carboxylic acid with methylamine. Used for for the treatment of metastatic colorectal cancer in patients who have previously received chemotherapy, anti-EGFR or anti-VEGF therapy. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor and a hepatotoxic agent. It is an aromatic ether, a pyridinecarboxamide, a member of monochlorobenzenes, a member of (trifluoromethyl)benzenes, a member of monofluorobenzenes and a member of phenylureas.
Regorafenib is an orally-administered inhibitor of multiple kinases. It is used for the treatment of metastatic colorectal cancer, advanced gastrointestinal stromal tumours, and hepatocellular carcinoma. FDA approved on September 27, 2012. Approved use of Regorafenib was expanded to treat Hepatocellular Carcinoma in April 2017.
Regorafenib anhydrous is a Kinase Inhibitor. The mechanism of action of regorafenib anhydrous is as a Kinase Inhibitor, and Cytochrome P450 2C9 Inhibitor, and Breast Cancer Resistance Protein Inhibitor, and UGT1A9 Inhibitor, and UGT1A1 Inhibitor.
Regorafenib is an oral multi-kinase inhibitor that is used in the therapy of refractory metastatic colorectal cancer, hepatocellular carcinoma and gastrointestinal stromal tumor. Regorafenib has been associated with frequent serum aminotransferase elevations during therapy and with rare, but sometimes severe and even fatal instances of clinically apparent liver injury.
Regorafenib Anhydrous is the anhydrous form of regorafenib, an orally bioavailable small molecule with potential antiangiogenic and antineoplastic activities. Regorafenib binds to and inhibits vascular endothelial growth factor receptors (VEGFRs) 2 and 3, and Ret, Kit, PDGFR and Raf kinases, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation. VEGFRs are receptor tyrosine kinases that play important roles in tumor angiogenesis; the receptor tyrosine kinases RET, KIT, and PDGFR, and the serine/threonine-specific Raf kinase are involved in tumor cell signaling.
Regorafenib is the hydrate form of regorafenib, an orally bioavailable small molecule with potential antiangiogenic and antineoplastic activities. Regorafenib binds to and inhibits vascular endothelial growth factor receptors (VEGFRs) 2 and 3, and Ret, Kit, PDGFR and Raf kinases, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation. VEGFRs are receptor tyrosine kinases that play important roles in tumor angiogenesis; the receptor tyrosine kinases RET, KIT, and PDGFR, and the serine/threonine-specific Raf kinase are involved in tumor cell signaling.
See also: Regorafenib Monohydrate (active moiety of).
Drug Indication
Regorafenib is indicated for the treatment of patients with metastatic colorectal cancer (CRC) who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if KRAS wild type, an anti-EGFR therapy. Regorafenib is also indicated for the treatment of patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumour (GIST) who have been previously treated with imatinib mesylate and sunitinib malate. Regorafenib is also indicated for the treatment of patients with hepatocellular carcinoma (HCC) previously treated with sorafenib.
FDA Label
Stivarga is indicated as monotherapy for the treatment of adult patients with: metastatic colorectal cancer (CRC) who have been previously treated with, or are not considered candidates for, available therapies - these include fluoropyrimidine-based chemotherapy, an anti-VEGF therapy and an anti-EGFR therapy; unresectable or metastatic gastrointestinal stromal tumors (GIST) who progressed on or are intolerant to prior treatment with imatinib and sunitinib; hepatocellular carcinoma (HCC) who have been previously treated with sorafenib.
Treatment of all conditions contained in the category of malignant neoplasms (except haematopoietic and lymphoid tissue)
Mechanism of Action
Regorafenib is a small molecule inhibitor of multiple membrane-bound and intracellular kinases involved in normal cellular functions and in pathologic processes such as oncogenesis, tumor angiogenesis, and maintenance of the tumor microenvironment. In in vitro biochemical or cellular assays, regorafenib or its major human active metabolites M-2 and M-5 inhibited the activity of RET, VEGFR1, VEGFR2, VEGFR3, KIT, PDGFR-alpha, PDGFR-beta, FGFR1, FGFR2, TIE2, DDR2, TrkA, Eph2A, RAF-1, BRAF, BRAFV600E , SAPK2, PTK5, and Abl at concentrations of regorafenib that have been achieved clinically. In in vivo models, regorafenib demonstrated anti-angiogenic activity in a rat tumor model, and inhibition of tumor growth as well as anti-metastatic activity in several mouse xenograft models including some for human colorectal carcinoma.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H15CLF4N4O3
Molecular Weight
482.82
Exact Mass
482.076
Elemental Analysis
C, 52.24; H, 3.13; Cl, 7.34; F, 15.74; N, 11.60; O, 9.94
CAS #
755037-03-7
Related CAS #
Regorafenib monohydrate;1019206-88-2;Regorafenib-d3;1255386-16-3;Regorafenib Hydrochloride;835621-07-3;Regorafenib mesylate;835621-08-4;Regorafenib-13C,d3
PubChem CID
11167602
Appearance
Off-white to light pink solid powder
Density
1.5±0.1 g/cm3
Boiling Point
513.4±50.0 °C at 760 mmHg
Melting Point
206.0 to 210.0 °C
Flash Point
264.3±30.1 °C
Vapour Pressure
0.0±1.3 mmHg at 25°C
Index of Refraction
1.616
LogP
5.26
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
5
Heavy Atom Count
33
Complexity
686
Defined Atom Stereocenter Count
0
SMILES
O=C(NC1=CC=C(C(C(F)(F)F)=C1)Cl)NC2=CC=C(OC3=CC(C(NC)=O)=NC=C3)C=C2F
InChi Key
FNHKPVJBJVTLMP-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H15ClF4N4O3/c1-27-19(31)18-10-13(6-7-28-18)33-12-3-5-17(16(23)9-12)30-20(32)29-11-2-4-15(22)14(8-11)21(24,25)26/h2-10H,1H3,(H,27,31)(H2,29,30,32)
Chemical Name
4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]-3-fluorophenoxy]-N-methylpyridine-2-carboxamide
Synonyms
BAY-734506; BAY734506; BAY 734506; Regorafenib. Brand name: Stivarga
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~97 mg/mL (~200.9 mM)
Water: <1 mg/mL (slightly soluble or insoluble)
Ethanol: N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 7.5 mg/mL (15.53 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 75.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 2: 2.75 mg/mL (5.70 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.18 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: 30% PEG400+0.5% Tween80+5% Propylene glycol : 30mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0712 mL 10.3558 mL 20.7117 mL
5 mM 0.4142 mL 2.0712 mL 4.1423 mL
10 mM 0.2071 mL 1.0356 mL 2.0712 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03042689 Active
Recruiting
Drug: Regorafenib Acute Myeloid Leukemia Massachusetts General Hospital April 17, 2017 Phase 1
NCT03712943 Active
Recruiting
Drug: Regorafenib
Drug: Nivolumab
Colon Cancer
Colorectal Cancer
Metastatic Colorectal Cancer
H. Lee Moffitt Cancer Center
and Research Institute
October 23, 2018 Phase 1
NCT04051606 Active
Recruiting
Drug: Regorafenib Recurrent Glioblastoma Case Comprehensive Cancer
Center
July 31, 2019 Phase 2
NCT04170556 Active
Recruiting
Drug: Regorafenib
Drug: Nivolumab
Hepatocellular Carcinoma Fundacion Clinic per a la
Recerca Biomédica
March 16, 2020 Phase 1
Phase 2
NCT02098538 Active
Recruiting
Drug: Regorafenib Adenoid Cystic Carcinoma Memorial Sloan Kettering
Cancer Center
March 2014 Phase 2
Biological Data
  • Regorafenib (BAY 73-4506)

    Regorafenib inhibits growth-factor-stimulated VEGFR2 and VEGFR3 autophosphorylation in human umbilical vascular endothelialcells (HuVECs) and intracellular signaling and migration in lymphatic endothelial cells (LECs).
  • Regorafenib (BAY 73-4506)

    Regorafenib inhibits key kinase targets in cells expressing VEGFR2, TIE2, PDGFR‐β, or FGFR.2011 Jul 1;129(1):245-55.

  • Regorafenib (BAY 73-4506)

    Regorafenib inhibits tumor vasculature and tumor growth in a rat GS9L glioblastoma model: time‐course analysis by DCE‐MRI.2011 Jul 1;129(1):245-55.

  • Regorafenib (BAY 73-4506)

    Regorafenib significantly reduces tumor MVA in the Colo‐205 CRC xenograft model.2011 Jul 1;129(1):245-55.

  • Regorafenib (BAY 73-4506)

    Regorafenib exhibits antitumorigenic and antiangiogenic effects in the MDA‐MB‐231 breast xenograft model.2011 Jul 1;129(1):245-55.

  • Regorafenib (BAY 73-4506)


    In vivoantitumor efficacy of regorafenib.2011 Jul 1;129(1):245-55.

Contact Us