Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
Resiquimod (formerly known as R-848; S-28463; VML-600; R848, S27609) is a potent imidazoquinolinamine-based immune response modifier that acts as an agonist of the TLR 7/8 receptors (Toll-like receptor 7/8) with antiviral and antitumour activity. It can induce the levels of cytokines such as TNF-α, IL-6 and IFN-α. Resiquimod is the analogue of imiquimod (also called R-837,S-26308) with potential immunostimulatory activity. Resiquimod has been reported to dose-dependently induce cytokines including IFN, TNF, IL-1β and IL-6 in human peripheral blood mononuclear (PBMCs). In addition, Resiquimod has been revealed to stimulate intracellular IL-1β increased approximately 15%. The results have also been noted that both monocytes and B cells produced IFN in response to Resiquimod. On April 28, 2016, orphan designation (EU/3/16/1653) was granted by the European Commission to resiquimod for the treatment of cutaneous T-cell lymphoma.
Targets |
Toll-like Receptor 7/8 (TLR7/8)
|
||
---|---|---|---|
ln Vitro |
Resiquimod (R-848) causes circulating T cells (including TH2 effectors) that are specific to haptens and allergens to produce IFN-γ and even lose their capacity to produce IL-4 [2]. In BrdU incorporation experiments, resiquimod (R848) increases the number of BrdU-positive cells and, in a dose-dependent manner, boosts PBL proliferation. The reporter of NF-κB activity, luciferase, significantly increased (3.5-fold) in cells treated with R848 [3].
|
||
ln Vivo |
Rats and mice can be utilized as models for immune-mediated cardiac tissue injury and cytokine production with Resiquimod in animal modeling. In SPF chickens, the intramuscular injection of Resiquimod (R-848) at a dose of 50 μg/bird dramatically increased the production of IFN-α, IFN-β, IFN-γ, IL-1β, IL-4, iNOS, and MHC-II genes [1].
|
||
Enzyme Assay |
BrdU incorporation assay[3]
For BrdU incorporation assay, R848 (1 µg/ml), CQ (10 µM), CQ plus R848 or PBS were added to PBL in a 6-well tissue culture plate as described earlier (2 × 106 cells/well). The cells were incubated at 22 °C for 48 h, and cellular proliferation was detected with BrdU Cell Proliferation Assay Kit according to the manufacturer's instructions. The assay was performed three times. Luciferase reporter assay[3] For luciferase assay, FG-9307 cells were transfected with the firefly NF-κB–specific luciferase reporter vector pNFκB-Met-Luc2 (Clontech, Mountain View, CA, USA) as described previously (Chi et al., 2013). pNFκB-MetLuc2 is designed to monitor the activation of the NF-κB signal transduction pathway directly from the cell culture medium. The vector contains an NF-κB enhancer element located upstream of the minimal TA promoter (PTA). Located downstream of PTA is a secreted-luciferase gene. Binding of transcription factors to the NF-κB enhancer element allows MetLuc to be expressed and secreted into the surrounding medium. pNFκB-MetLuc2 has been demonstrated to work in fish system (Lauksund et al., 2009). Transfection efficiency was monitored by co-transfection with the pSEAP2 control vector, which constitutively expresses the human secreted enhanced alkaline phosphatase (SEAP). Then the cells were treated with R848 (1 µg/ml), CQ (10 µM), CQ plus R848 or PBS and incubated at 22 °C for 24 h. The culture medium of the transfectants was then analyzed for luciferase activity and SEAP activity using Luciferase Assay Kit and the Great EscAPe™ SEAP Chemiluminescence Detection Kit, respectively. The assay was performed three times. |
||
Cell Assay |
MTT assay to determine cellular proliferation[3]
To prepare PBL, blood was collected from the caudal veins of flounder and diluted 1:5 with L-15 medium. The diluted blood was placed on top of 61% Percoll and centrifuged at 400 × g for 30 min. The layer of PBL was recovered and washed three times with PBS. The cells were distributed in 96-well tissue culture plates (5 × 105 cells/well) in L-15 medium containing 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin. The cells were treated with different concentrations (0, 0.175, 0.25, 0.5, 1, 2, 4, 8, and 16 µg/ml) of R848 for 48 h. For inhibition of lysosomal acidification, cells were incubated with 10 µM CQ for 1 h before R848 treatment. After treatment, 20 µl of 5 mg/ml MTT {3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide} was added to the plate. The plate was incubated at 22 °C for 4 h, and 200 µl dimethyl sulfoxide was added to the plate to dissolve the reduced formazan. The plate was then read at 490 nm with a microplate reader. To determine the effect of Myd88 inhibition on R848-induced cell proliferation, the Myd88 inhibitor Pepinh-MYD (RQIKIWFQNRRMKWKK-RDVLPGTCVNS-NH2) and the control peptide Pepinh-Control (RQIKIWFQNRRMKWKK-SLHGRGDPMEAFII-NH2) were added to PBL at the concentration of 50 µM, and the plate was incubated at 22 °C for 6 h. After incubation, the cells were treated with R848 and subjected to MTT assay as above. To determine the effect of NF-κB inactivation on R848-induced cell proliferation, BAY-11-7082, an irreversible inhibitor of IκB-α phosphorylation, was added to the cells at the concentration of 1 µM, and the plate was incubated at 22 °C for 1 h. After incubation, the cells were treated with R848 and subjected to MTT assay as earlier. All experiments were performed three times. Apoptoses assay[3] PBL prepared earlier were distributed in 12-well tissue culture plates (1 × 106 cells/well) in L-15 medium containing 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin. R848 (1 µg/ml), CQ (10 µM), CQ plus R848 or PBS were added to the cells, and the cells were incubated at 22 °C for 12 h or 48 h. After incubation, the cells were washed twice with cold PBS. The washed cells were treated with FITC-conjugated annexin V and propidium iodide (PI) by using annexin V-FITC and PI Cell Apoptosis Detection Kit according to the manufacturer's instructions. The cells were then subjected to flow cytometry using a FACSort Flow Cytometer equipped with FlowJo software (Tree Star Inc, Ashland OR) for data analysis. To determine the effect of Myd88 inhibition on apoptosis, Pepinh-MYD and Pepinh-Control were added to PBL at the concentration of 50 µM. After incubation at 22 °C for 6 h, the cells were treated with R848 and subjected to annexin V/PI assay as earlier. To determine the effect of NF-κB inactivation on R848-induced anti-apoptosis, BAY-11-7082 was added to the cells at the concentration of 1 µM. After incubated at 22 °C for 1 h, the cells were treated with R848 and subjected to annexin V/PI assay as earlier. All experiments were performed three times. Quantitative real-time reverse transcription-PCR (qRT-PCR)[3] Total RNA was extracted from PBL with the RNAprep Tissue Kit. One microgram of total RNA was used for cDNA synthesis with M-MLV reverse transcriptase. qRT-PCR was carried out in an Eppendorf Mastercycler using the SYBR ExScript qRT-PCR Kit as described previously (Zheng and Sun, 2011). Melting curve analysis of amplification products was performed at the end of each PCR to confirm that only one PCR product was amplified and detected. The expression level of the target gene was analyzed using comparative threshold cycle method with beta-actin as the internal reference (Zhang et al., 2013). The experiment was performed three times. |
||
Animal Protocol |
|
||
References |
|
||
Additional Infomation |
Resiquimod is an imidazoquinoline.
A substance being studied in the treatment of some types of skin cancer. When put on the skin, resiquimod causes some immune cells to make certain chemicals that may help them kill tumor cells. It is also being studied to find out if adding it to a tumor vaccine improves the antitumor immune response. It is a type of imidazoquinoline and a type of immunomodulator. Resiquimod is an imidazoquinolinamine and Toll-like receptor (TLR) agonist with potential immune response modifying activity. Resiquimod exerts its effect through the TLR signaling pathway by binding to and activating TLR7 and 8 mainly on dendritic cells, macrophages, and B-lymphocytes. This induces the nuclear translocation of the transcription activator NF-kB as well as activation of other transcription factors. This may lead to an increase in mRNA levels and subsequent production of cytokines, especially interferon-alpha (INF-a) and other cytokines, thereby enhancing T-helper 1 (Th1) immune responses. In addition, topical application of resiquimod appears to activate Langerhans' cells, leading to an enhanced activation of T-lymphocytes. Due to its immunostimulatory activity, this agent may potentially be useful as a vaccine adjuvant. Drug Indication Investigated for use/treatment in genital herpes. Mechanism of Action Resiquimod is a Toll-like receptor 7 (TLR7) and TLR8 agonist that is a potent inducer of alpha interferon (IFN-alpha) and other cytokines. |
Molecular Formula |
C17H22N4O2
|
|
---|---|---|
Molecular Weight |
314.38
|
|
Exact Mass |
314.174
|
|
Elemental Analysis |
C, 64.95; H, 7.05; N, 17.82; O, 10.18
|
|
CAS # |
144875-48-9
|
|
Related CAS # |
Resiquimod-d5;2252319-44-9;Resiquimod;144875-48-9
|
|
PubChem CID |
159603
|
|
Appearance |
White to light yellow solid
|
|
Density |
1.3±0.1 g/cm3
|
|
Boiling Point |
553.6±50.0 °C at 760 mmHg
|
|
Melting Point |
193 °C
|
|
Flash Point |
288.6±30.1 °C
|
|
Vapour Pressure |
0.0±1.6 mmHg at 25°C
|
|
Index of Refraction |
1.635
|
|
LogP |
2.15
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
5
|
|
Rotatable Bond Count |
5
|
|
Heavy Atom Count |
23
|
|
Complexity |
406
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
O([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])N1C(C([H])([H])OC([H])([H])C([H])([H])[H])=NC2C(N([H])[H])=NC3=C([H])C([H])=C([H])C([H])=C3C1=2
|
|
InChi Key |
BXNMTOQRYBFHNZ-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C17H22N4O2/c1-4-23-9-13-20-14-15(21(13)10-17(2,3)22)11-7-5-6-8-12(11)19-16(14)18/h5-8,22H,4,9-10H2,1-3H3,(H2,18,19)
|
|
Chemical Name |
1-(4-amino-2-(ethoxymethyl)-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.95 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 2.08 mg/mL (6.62 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL corn oil and mix evenly. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.1809 mL | 15.9043 mL | 31.8086 mL | |
5 mM | 0.6362 mL | 3.1809 mL | 6.3617 mL | |
10 mM | 0.3181 mL | 1.5904 mL | 3.1809 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.