yingweiwo

RO-9187

Alias: RO-9187; RO 9187; RO9187.
Cat No.:V3659 Purity: ≥98%
RO-9187 is a novel and potent inhibitor ofHCVvirus replication withIC50of 171 nM.
RO-9187
RO-9187 Chemical Structure CAS No.: 876708-03-1
Product category: HCV
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

RO-9187 is a novel and potent inhibitor of HCV virus replication with IC50 of 171 nM. RO-0622 and RO-9187 were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.

Biological Activity I Assay Protocols (From Reference)
Targets
HCV(IC50=171 nM)
ln Vitro
RO-9187 is phosphorylated with efficiencies up to three times higher than deoxycytidine, making it a great substrate for deoxycytidine kinase. Inhibiting RNA synthesis by HCV polymerases from HCV genotypes 1a and 1b or with S96T or S282T point mutations with comparable potencies, RO-9187 suggests that there is no cross-resistance with 2′-C-methyl nucleosides or R1479 (4′-azidocytidine). RO-9187-TP production rose in a dose- and time-dependent fashion. Half-maximum triphosphate formation is reached at 12 μM, and the maximum triphosphate concentration at 24 hours is 87 pmol/106 cells. RO-9187 [1].
ln Vivo
Following oral dosing, rats' plasma exposures to RO-9187 rise between 10 and 2000 mg/kg in a dose-dependent manner. At a dose level of 10 mg/kg, rats and dogs exhibit plasma concentrations of 1.4 and 26 μM (390 and 7454 ng/mL), respectively. Rats given 2000 mg/kg/day can achieve plasma concentrations of up to 57 μM[1].
Animal Protocol
Rats: Hanover-Wistar rats are used in a 2-week oral range finding toxicity study with RO-9187 and ribavirin. For 14 days, five male and five female rats in each of the five treatment groups receive once-daily oral gavage doses of 200, 600, or 2000 mg/kg RO-9187 or 200 mg/kg ribavirin[1].
References

[1]. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. J Biol Chem. 2008 Jan 25;283(4):2167-75.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H12N6O5
Molecular Weight
284.22878
Exact Mass
284.09
Elemental Analysis
C, 38.03; H, 4.26; N, 29.57; O, 28.14
CAS #
876708-03-1
Appearance
Solid powder
SMILES
O=C1N=C(N)C=CN1[C@H]2[C@@H](O)[C@H](O)[C@](CO)(N=[N+]=[N-])O2
InChi Key
ODLGMSQBFONGNG-XZMZPDFPSA-N
InChi Code
InChI=1S/C9H12N6O5/c10-4-1-2-15(8(19)12-4)7-5(17)6(18)9(3-16,20-7)13-14-11/h1-2,5-7,16-18H,3H2,(H2,10,12,19)/t5-,6-,7+,9+/m0/s1
Chemical Name
4-amino-1-[(2R,3S,4S,5R)-5-azido-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one
Synonyms
RO-9187; RO 9187; RO9187.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~351.83 mM)
H2O : ~5 mg/mL (~17.59 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (8.80 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (8.80 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: 2.5 mg/mL (8.80 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: 2.5 mg/mL (8.80 mM)

Solubility in Formulation 5: 5.88 mg/mL (20.69 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication (<60°C).

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.5183 mL 17.5914 mL 35.1828 mL
5 mM 0.7037 mL 3.5183 mL 7.0366 mL
10 mM 0.3518 mL 1.7591 mL 3.5183 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us