yingweiwo

Rocaglamide

Alias: RocA; Rocaglamide A; Rocaglamide
Cat No.:V13945 Purity: ≥98%
Rocaglamide (Roc-A) is extracted from the Meliaceae plant and is used for coughs, injuries, asthma and inflammatory skin conditions.
Rocaglamide
Rocaglamide Chemical Structure CAS No.: 84573-16-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of Rocaglamide:

  • Aglafoline
  • Didesmethylrocaglamide
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Rocaglamide (Roc-A) is extracted from the Meliaceae plant and is used for coughs, injuries, asthma and inflammatory skin conditions. Rocaglamide is a potent inhibitor of NF-κB activation in T cells. Rocaglamide is a potent and specific inhibitor of heat shock factor 1 (HSF1) activation with IC50 of about 50 nM. Rocaglamide also inhibits the function of the translation initiation factor eIF4A. Rocaglamide also has anti-cancer properties.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
TRAIL-induced HCC cell engraftment is enhanced by rocaglamide. HepG2 and H-7 cell engraftment were 9% and 11%, respectively, after rocaglamide therapy alone. HepG2 and H-7 cell engraftment was 16% and 17%, respectively, after TRAIL treatment. However, it is evident that the combination of Rocaglamide and TRAIL did more than just have an additive effect because it also generated cellular tolerance in 55% of HepG2 and 57% of Huh-7 cells. Injection violet staining was used to measure cell viability, and similar results were achieved. Highly drug- and chemoresistant HepG2 and Huh-7 cells may become more susceptible to TRAIL-based therapy when exposed to rocamide [2].
ln Vivo
Compared to the catalyst group, the tumor volume in the rocaramide-treated group was 45 ± 12%. When compared to catalyst, rocamide greatly slowed the growth of tumors. Rocamide was generally well tolerated, as evidenced by the fact that neither weight loss nor evident toxicity was seen consistently in mice during the treatment period in groups treated with the drug [2].
References

[1]. Tight coordination of protein translation and heat shock factor 1 activation supports the anabolic malignant state. Science. 2013 Jul 19; 341(6143): 1238303.

[2]. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation. Mol Med Rep.

[3]. Rocaglamide derivatives are potent inhibitors of NF-kappa B activation in T-cells. J Biol Chem. 2002 Nov 22;277(47):44791-800.

Additional Infomation
Rocaglamide is an organic heterotricyclic compound that is 2,3,3a,8b-tetrahydro-1H-benzo[b]cyclopenta[d]furan substituted by hydroxy groups at positions 1 and 8b, methoxy groups at positions 6 and 8, a 4-methoxyphenyl group at position 3a, a phenyl group at position 3 and a N,N-dimethylcarbamoyl group at position 1. Isolated from Aglaia odorata and Aglaia duperreana, it exhibits antineoplastic activity. It has a role as a metabolite, an antineoplastic agent and an antileishmanial agent. It is an organic heterotricyclic compound, a monomethoxybenzene and a monocarboxylic acid amide.
Rocaglamide, also referred to as rocaglamide-A, is the eponymous member of a class of anti-cancer phytochemicals known as rocaglamides. Rocaglamides are secondary metabolites of the plant genus Aglaia, and extracts of the plant have traditionally been used as a form of insect repellant due to its natural insecticidal properties. Reports of Aglaia anti-tumor activity date back as far as 1973, and rocaglamide-A was first isolated in 1982 from the species A. elliptifolia. Rocaglamide and a number of its derivatives (e.g. [didesmethylrocaglamide]) are currently being studied for use as chemotherapeutic agents in the treatment of various leukemias, lymphomas, and carcinomas, as well as adjuvant therapy in the treatment of certain chemotherapy-resistant cancers.
Rocaglamide has been reported in Aglaia formosana, Aglaia elliptifolia, and other organisms with data available.
Mechanism of Action
Rocaglamide’s anti-tumor activity is driven primarily via inhibition of protein synthesis in tumor cells. Inhibition of protein synthesis is accomplished via inhibition of prohibitin 1 (PHB1) and prohibitin 2 (PHB2) - these proteins are necessary in the proliferation of cancer cells and are implicated in the Ras-mediated CRaf-MEK-ERK signaling pathway responsible for phosphorylating eIF4E, a key factor in the initiation of protein synthesis. The rocaglamide derivative silvestrol has also been observed to act directly on eIF4A, another translation initiation factor of the eIF4F complex ultimately responsible for initiation of protein synthesis. Inhibition of protein synthesis has a number of downstream effects. Many of the proteins that are down-regulated in response to protein synthesis inhibition in tumor cells are short-lived proteins responsible for regulation of the cell cycle, such as Cdc25A. Cdc25A is an oncogene that can become overexpressed in certain cancers and lead to unchecked cell growth. In addition to inhibiting its synthesis via the mechanism described above, rocaglamide promotes degradation of Cdc25A via activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway. This pathway is normally activated in response to DNA damage and serves to reduce the expression of proteins responsible for cell cycle progression, thereby inhibiting proliferation of damaged (i.e. tumour) cells. Rocaglamide’s inhibition of protein synthesis also appears to prevent the actions of the transcription factor heat shock factor 1 (HSF1), leading to an increased expression of thioredoxin-interacting protein (TXNIP) which is negatively regulated by HSF1. TXNIP is a negative regulator of cell glucose uptake, and its increased expression blocks glucose uptake and consequently impairs the proliferation of malignant cells. Rocaglamide also appears to induce apoptosis in tumor cells via activation of the pro-apoptotic proteins p38 and JNK and inhibition of the anti-apoptotic Mcl-1 protein. Similarly, it has been studied as an adjuvant in TRAIL-resistant cancers due to its ability to inhibit the synthesis of c-FLIP and IAP/XIAP - these anti-apoptotic proteins can become elevated in certain cancers, preventing the induction of apoptosis and resulting in resistance to TRAIL-based therapies.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H31NO7
Molecular Weight
505.56
Exact Mass
505.21
CAS #
84573-16-0
Related CAS #
Aglafoline;143901-35-3;Didesmethylrocaglamide;177262-30-5
PubChem CID
331783
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
667.3±55.0 °C at 760 mmHg
Flash Point
357.4±31.5 °C
Vapour Pressure
0.0±2.1 mmHg at 25°C
Index of Refraction
1.634
LogP
3.1
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
6
Heavy Atom Count
37
Complexity
810
Defined Atom Stereocenter Count
5
SMILES
CN(C)C(=O)[C@@H]1[C@H]([C@]2([C@@]([C@@H]1O)(C3=C(O2)C=C(C=C3OC)OC)O)C4=CC=C(C=C4)OC)C5=CC=CC=C5
InChi Key
DAPAQENNNINUPW-IDAMAFBJSA-N
InChi Code
InChI=1S/C29H31NO7/c1-30(2)27(32)23-24(17-9-7-6-8-10-17)29(18-11-13-19(34-3)14-12-18)28(33,26(23)31)25-21(36-5)15-20(35-4)16-22(25)37-29/h6-16,23-24,26,31,33H,1-5H3/t23-,24-,26-,28+,29+/m1/s1
Chemical Name
(1R,2R,3S,3aR,8bS)-1,8b-dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-N,N-dimethyl-3-phenyl-2,3-dihydro-1H-cyclopenta[b][1]benzofuran-2-carboxamide
Synonyms
RocA; Rocaglamide A; Rocaglamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~197.80 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 7.5 mg/mL (14.84 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 75.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 7.5 mg/mL (14.84 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 75.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 4.76 mg/mL (9.42 mM) (saturation unknown) in 5% DMSO + 95% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9780 mL 9.8900 mL 19.7800 mL
5 mM 0.3956 mL 1.9780 mL 3.9560 mL
10 mM 0.1978 mL 0.9890 mL 1.9780 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us