Size | Price | Stock | Qty |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
Rosiglitazone HCl (HSDB-7555; BRL-49653; TDZ-01; BRL49653), the hydrochloride salt of Rosiglitazone, is a potent antidiabetic/antihyperglycemic drug of the thiazolidinedione class with anti-inflammatory activities. It acts as a potent insulin sensitizer with IC50s of 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, respectively. It is also a selective PPARγ agonist which activates PPARγ1/γ2/γ with EC50s of 30 nM, 100 nM and 60 nM, respectively. Rosiglitazone binds to the PPAR receptors in fat cells and making the cells more responsive to insulin.
Targets |
PPARγ (Kd = 40 nM); PPARγ (EC50 = 60 nM); TRPC5 (EC50 = 30 μM); TRPM3
|
---|---|
ln Vitro |
Adipocyte differentiation is the outcome of pluripotent C3H10T1/2 stem cells treated with rosiglitazone hydrochloride (0.1–10 μM) for 72 hours[1]. In addition to protecting Neuro2A cells and hippocampal neurons against oxidative stress, Rosiglitazone hydrochloride (1 μM, 24 h) activates PPARγ, which binds to the NF-κ1 promoter to activate gene transcription[3]. It also up-regulates BCL-2 expression. The proliferation of ovarian cancer cells is inhibited by rosiglitazone hydrochloride (0.01-100 Rosiglitazone hydrochloride (0.5-50 μM, 7 days)[7]. In A2780 and SKOV3 cells, 5 μM administered over a 7-day period inhibits changes in cellular senescence caused by Olaparib and encourages apoptosis[7].
|
ln Vivo |
In diabetic rats, rosiglitazone hydrochloride (oral treatment, 5 mg/kg, daily for 8 weeks) lowers serum glucose levels[5]. By suppressing M1 macrophage polarization and activating PPARγ and RXRα in male Wistar rats, rosiglitazone hydrochloride (intraperitoneal injection, 3 mg/kg/day) reduces airway inflammation caused by cigarette smoke[6]. Subcutaneous ovarian cancer growth is inhibited in A2780 and SKOV3 mouse subcutaneous xenograft models by rosiglitazone hydrochloride (intraperitoneal injection, 10 mg/kg, once every two days)[7].
|
Enzyme Assay |
Here, we report that thiazolidinediones are potent and selective activators of peroxisome proliferator-activated receptor gamma (PPAR gamma), a member of the nuclear receptor superfamily recently shown to function in adipogenesis. The most potent of these agents, BRL49653, binds to PPAR gamma with a Kd of approximately 40 nM. Treatment of pluripotent C3H10T1/2 stem cells with BRL49653 results in efficient differentiation to adipocytes. These data are the first demonstration of a high affinity PPAR ligand and provide strong evidence that PPAR gamma is a molecular target for the adipogenic effects of thiazolidinediones. Furthermore, these data raise the intriguing possibility that PPAR gamma is a target for the therapeutic actions of this class of compounds.[1]
cDNA encoding amino acids 174-475 of PPARγ1 is amplified via polymerase chain reaction and inserted into bacterial expression vector pGEX-2T. GST-PPARγ LBD is expressed in BL21(DE3)plysS cells and extracts. For saturation binding analysis, bacterial extracts (100 μg of protein) are incubated at 4°C for 3 h in buffer containing 10 mM Tris (pH 8.0), 50 mM KCl, 10 mM dithiothreitol with [3H]-BRL49653 (specific activity, 40 Ci/mmol) in the presence or absence of unlabeled Rosiglitazone. Bound is separated from free radioactivity by elution through 1-mL Sephadex G-25 desalting columns. Bound radioactivity eluted in the column void volume and is quantitated by liquid scintillation counting[1]. |
Cell Assay |
Cell Proliferation Assay[7]
Cell Types: A2780 and SKOV3 cells Tested Concentrations: 0.5-50 μM Incubation Duration: 1- 7 days Experimental Results: Inhibited cell proliferation in a time‑dependent and concentration‑dependent manner. Western Blot Analysis[3] Cell Types: Hippocampal neurons Tested Concentrations: 1 μM Incubation Duration: 1 μM Experimental Results: Increased NF-α1 and BCL-2 protein level . |
Animal Protocol |
Animal/Disease Models: Streptozotocin (STZ)-induced diabetic rats[5]
Doses: 5 mg/kg Route of Administration: Oral administration, daily for 8 weeks. Experimental Results: diminished IL-6, TNF-α, and VCAM-1 levels in diabetic group. Displayed lower levels of lipid peroxidation and NOx with an increase in aortic GSH and SOD levels compared to diabetic groups. Animal/Disease Models: Male Wistar rats[6] Doses: 3 mg/kg/day Route of Administration: intraperitoneal (ip)injection, twice a day, 6 days per week for 12 weeks Experimental Results: Ameliorated emphysema, elevated PEF, and higher level of total cells, neutrophils and cytokines (TNF-α and IL-1β) induced by cigarette smoke (CS). Inhibited CS-induced M1 macrophage polarization and diminished the ratio of M1/M2. |
References |
|
Additional Infomation |
Background: Rosiglitazone, an exogenous ligand of PPARγ, plays an important anti-inflammatory role during the inflammation caused by cigarette smoke (CS). CS exposure induces pulmonary inflammation via activating macrophage polarization. However, the effects of rosiglitazone on macrophage polarization induced by CS are unclear.[6]
Methods: 36 male Wistar rats were randomly divided into 3 groups: control, CS and ROSI. In the CS group, rats were passively exposed to cigarette smoke for consecutive 3 months. In the ROSI group, rats were treated with rosiglitazone (3 mg/kg/day, ip) during CS exposure period. Alveolar macrophages of rats were isolated and cultured with CSE. The slices of lung tissues were stained with hematoxylin and eosin. The histomorphology was observed to evaluate emphysema and the pulmonary function was detected. Cells in bronchoalveolar lavage fluid (BALF) were examined and the expression of cytokines TNF-α and IL-1β was detected by ELISA and qPCR. The alveolar macrophage polarization was evaluated by immunohistochemistry and flow cytometry assay in vivo and by qPCR in vitro. The protein level of PPARγ and RXRα was measured by Western blot.[6] Results: CS exposure induced significant emphysema, diminished FEV0.2/FVC, elevated PEF, and higher level of total cells, neutrophils and cytokines (TNF-α and IL-1β) in BALF compared with control group, whereas rosiglitazone partly ameliorated above disorders. CS exposure activated M1 and M2 macrophage polarization in vivo and in vitro, whereas rosiglitazone inhibited CS induced M1 macrophage polarization and decreased the ratio of M1/M2. The effects of rosiglitazone on macrophage polarization were partly blocked after AMs treated with the antagonists of PPARγ and RXRα, and were synergistically enhanced by the agonist of RXRα. CS exposure decreased the expression of PPARγ and RXRα in lung tissues and AMs, and rosiglitazone partly reversed CS-mediated suppression of PPARγ and RXRα.[6] Conclusion: Rosiglitazone ameliorated the emphysema and inflammation in lung tissues induced by CS exposure via inhibiting the M1 macrophage polarization through activating PPARγ and RXRα.[6] Objective: Senescence mechanisms are vital to resistance to long-term olaparib maintenance treatment. Recently, peroxisome proliferator-activated receptor-γ agonists (e.g., rosiglitazone) have been reported to ameliorate the senescence-like phenotype by modulating inflammatory mediator production. This study examined synergistic effects on the anti-tumor activity of rosiglitazone combined with olaparib in ovarian cancer treatment.[7] Methods: A2780 and SKOV3 mouse subcutaneous xenograft models were established for observing anti-tumor effects in living organisms and were randomly split into combination (both olaparib and rosiglitazone), rosiglitazone (10 mg/kg), olaparib (10 mg/kg), control (solvent) groups that received treatment once every 2 or 3 days (n = 6 per group). Cell counting kit-8 (CCK-8) assays were used to test the influences of rosiglitazone and olaparib on cell proliferation. PI and Annexin-V-FITC staining was used with flow cytometry to assess the cell cycle distribution and cell apoptosis. Senescence-associated β-galactosidase (SA-β-Gal) staining was used to observe cellular senescence. We performed quantitative real-time polymerase chain reaction assays to study the senescence-related secretory phenotype (SASP). [7] Results: Olaparib and rosiglitazone were observed to synergistically retard subcutaneous ovarian cancer growth in vivo, and synergistically suppress ovarian cancer cell proliferation in vitro. Compared with olaparib alone, the percentage of positive cells expressed SA-β-gal and SASP were significantly decreased in the treatment of combination of olaparib and rosiglitazone. Furthermore, olaparib plus rosiglitazone increased the percentage of apoptosis in ovarian cancer cell compared with olaparib alone. In A2780 cells, it showed lower expression of P53, phospho-p53 (Ser15), P21, and P18 protein in combination treatment compared with olaparib alone. While, in SKOV3 cells, it showed lower expression of phosphor-retinoblastoma protein (Rb) (Ser807/811), and higher expression of cyclin D1, P21, and P16 protein in combination treatment compared with olaparib alone.[7] Conclusions: Rosiglitazone combined with olaparib can help manage ovarian cancer by ameliorating olaparib-induced senescence and improving anti-tumor effects. |
Molecular Formula |
C18H19N3O3S.HCL
|
---|---|
Molecular Weight |
393.89
|
Exact Mass |
393.091
|
CAS # |
302543-62-0
|
Related CAS # |
Rosiglitazone maleate;155141-29-0;Rosiglitazone;122320-73-4;Rosiglitazone potassium;316371-84-3;Rosiglitazone-d3;1132641-22-5
|
PubChem CID |
9865387
|
Appearance |
Typically exists as White to off-white solids at room temperature
|
LogP |
3.621
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
26
|
Complexity |
469
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CN(C1=CC=CC=N1)CCOC2=CC=C(CC3C(NC(S3)=O)=O)C=C2.Cl
|
InChi Key |
XRSCTTPDKURIIJ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C18H19N3O3S.ClH/c1-21(16-4-2-3-9-19-16)10-11-24-14-7-5-13(6-8-14)12-15-17(22)20-18(23)25-15;/h2-9,15H,10-12H2,1H3,(H,20,22,23);1H
|
Chemical Name |
5-(4-(2-(methyl(pyridin-2-yl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydrochloride
|
Synonyms |
Rosiglitazone HCl; Rosiglitazone Hydrochloride; HSDB-7555; BRL-49653 HCl; BRL49653; TDZ-01; BRL 49653; HSDB 7555; HSDB7555; TDZ 01; TDZ01; Rosiglitazone. trade name Avandia; 302543-62-0; ROSIGLITAZONE HCl; Rosiglitazone (hydrochloride); BRL 49653 (hydrochloride); 5-[[4-[2-[methyl(pyridin-2-yl)amino]ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione;hydrochloride; Rosiglitazone hydrochloride [WHO-DD]; S3055SS582;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5388 mL | 12.6939 mL | 25.3878 mL | |
5 mM | 0.5078 mL | 2.5388 mL | 5.0776 mL | |
10 mM | 0.2539 mL | 1.2694 mL | 2.5388 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00484419 | Completed Has Results | Drug: Colesevelam HCl Drug: rosiglitazone maleate |
Type 2 Diabetes Hyperlipidemia |
Daiichi Sankyo | May 2007 | Phase 3 |
NCT00672919 | Completed | Drug: Pioglitazone | Diabetes Mellitus | Takeda | November 2003 | Phase 4 |
NCT00499707 | Completed | Drug: rosiglitazone maleate/metformin hydrochloride |
Diabetes Mellitus, Type 2 | GlaxoSmithKline | October 8, 2003 | Phase 3 |
NCT00297063 | Completed | Drug: Rosiglitazone | Diabetes Mellitus, Type 2 | GlaxoSmithKline | January 11, 2006 | Phase 3 |