yingweiwo

Rosiglitazone maleate

Alias: BRL 49653; BRL49653;BRL-49653;Rosiglitazone Maleate; Avandia; Avandaryl; BRL-49653C; BRL49653C; BRL 49653C; 155141-29-0; Avandia; Rosiglitazone XR; Rosiglitazone (maleate); Rosiglitazone Maleate [USAN]; BRL-49653C; Rosiglitzazone maleate; BRL-49653-C;
Cat No.:V0824 Purity: ≥98%
Rosiglitazone maleate (TDZ01;HSDB-7555; TDZ-01;BRL-49653; trade name Avandia), the maleic acid salt form of rosiglitazone which is an approved anti-diabetic drug,is a thiazolidinedione-based antihyperglycaemic agent with antidiabetic properties and potential antineoplastic activity.
Rosiglitazone maleate
Rosiglitazone maleate Chemical Structure CAS No.: 155141-29-0
Product category: PPAR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Rosiglitazone maleate:

  • Rosiglitazone
  • Rosiglitazone HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Rosiglitazone maleate (TDZ01; HSDB-7555; TDZ-01; BRL-49653; trade name Avandia), the maleic acid salt form of rosiglitazone which is an approved anti-diabetic drug, is a thiazolidinedione-based antihyperglycaemic agent with antidiabetic properties and potential antineoplastic activity.

Biological Activity I Assay Protocols (From Reference)
Targets
PPARγ (Kd = 40 nM); PPARγ (EC50 = 60 nM); TRPC5 (EC50 = 30 μM); TRPM3
ln Vitro
Rosiglitazone maleate has an EC50 of 30 nM for PPARγ1 and 100 nM for PPARγ2, respectively, and a Kd of roughly 40 nM for PPARγ, making it a strong and selective PPARγ activator. The development of C3H10T1/2 stem cells into adipocytes is aided by rosiglitazone (BRL49653, 0.1, 1, 10 μM) [1]. With an EC50 of 60 nM, compound 6 (rosiglitazone) activates PPARγ[2]. As PPARγ binds to the NF-κ1 promoter, rosiglitazone (1 μM) promotes gene transcription in neurons. Furthermore, in an NF-κ1-dependent way, rosiglitazone (1 μM) increases BCL-2 expression while shielding Neuro2A cells and hippocampus neurons from oxidative stress [3]. TRPM3 is totally blocked by rosiglitazone against nifedipine- and PregS-induced activity, with IC50 values of 9.5 and 4.6 μM, respectively. However, PPARγ is not involved in this action. An IC50 of roughly 22.5 μM indicates that rosiglitazone inhibits TRPM2 at greater dosages. EC50 of ~30 μM makes rosiglitazone a potent TRPC5 channel stimulant [4].
ln Vivo
In diabetic rats, rosiglitazone (5 mg/kg, po) lowers blood glucose levels. Additionally, rosiglitazone decreased the diabetic group's levels of VCAM-1, TNF-α, and IL-6. When rosiglitazone and losartan were combined, blood glucose levels rose in comparison to the diabetes and Los treatment groups. In aortas isolated from diabetic rats, rosiglitazone markedly improves endothelial dysfunction as evidenced by significantly reduced contractile responses to PE and Ang II and increased ACh-induced relaxation [5].
Enzyme Assay
Brain peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily of ligand-dependent transcription factors, is involved in neuroprotection. It is activated by the drug rosiglitazone, which then can increase the pro-survival protein B-cell lymphoma 2 (BCL-2), to mediate neuroprotection. However, the mechanism underlying this molecular cascade remains unknown. Here, we show that the neuroprotective protein neurotrophic factor-α1 (NF-α1), which also induces the expression of BCL-2, has a promoter that contains PPARγ-binding sites that are activated by rosiglitazone. Treatment of Neuro2a cells and primary hippocampal neurons with rosiglitazone increased endogenous NF-α1 expression and prevented H2 O2 -induced cytotoxicity. Concomitant with the increase in NF-α1, BCL-2 was also increased in these cells. When siRNA against NF-α1 was used, the induction of BCL-2 by rosiglitazone was prevented, and the neuroprotective effect of rosiglitazone was reduced. These results demonstrate that rosiglitazone-activated PPARγ directly induces the transcription of NF-α1, contributing to neuroprotection in neurons. We proposed the following cascade for neuroprotection against oxidative stress by rosiglitazone: Rosiglitazone enters the neuron and binds to peroxisome proliferator-activated receptor gamma (PPARγ) in the nucleus. The PPARγ-rosiglitazone complex binds to the neurotrophic factor-α1 (NF-α1) promoter and activates the transcription of NF-α1 mRNA which is then translated to the protein. NF-α1 is the secreted, binds to a cognate receptor and activates the extracellular signal-regulated kinases (ERK) pathway. This in turn enhances the expression of the pro-survival protein, B-cell lymphoma 2 (BCL-2) and inhibition of caspase 3 (Csp-3) to mediate neuroprotection under oxidative stress. Akt, protein kinase B (PKB)[3].
Cell Assay
The aim of this study was to generate new insight into chemical regulation of transient receptor potential (TRP) channels with relevance to glucose homeostasis and the metabolic syndrome. Human TRP melastatin 2 (TRPM2), TRPM3, and TRP canonical 5 (TRPC5) were conditionally overexpressed in human embryonic kidney 293 cells and studied by using calcium-measurement and patch-clamp techniques. Rosiglitazone and other peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were investigated. TRPM2 was unaffected by rosiglitazone at concentrations up to 10 μM but was inhibited completely at higher concentrations (IC(50), ∼22.5 μM). TRPM3 was more potently inhibited, with effects occurring in a biphasic concentration-dependent manner such that there was approximately 20% inhibition at low concentrations (0.1-1 μM) and full inhibition at higher concentrations (IC(50), 5-10 μM). PPAR-γ antagonism by 2-chloro-5-nitrobenzanilide (GW9662) did not prevent inhibition of TRPM3 by rosiglitazone. TRPC5 was strongly stimulated by rosiglitazone at concentrations of ≥10 μM (EC(50), ∼30 μM). Effects on TRPM3 and TRPC5 occurred rapidly and reversibly. Troglitazone and pioglitazone inhibited TRPM3 (IC(50), 12 μM) but lacked effect on TRPC5, suggesting no relevance of PPAR-γ or the thiazolidinedione moiety to rosiglitazone stimulation of TRPC5. A rosiglitazone-related but nonthiazolidinedione PPAR-γ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine (GW1929), was a weak stimulator of TRPM3 and TRPC5. The natural PPAR-γ agonist 15-deoxy prostaglandin J(2), had no effect on TRPM3 or TRPC5. The data suggest that rosiglitazone contains chemical moieties that rapidly, strongly, and differentially modulate TRP channels independently of PPAR-γ, potentially contributing to biological consequences of the agent and providing the basis for novel TRP channel pharmacology[4].
Animal Protocol
Rats are intravenously injected with 38 mg/kg streptozotocin and after 48 h, diabetes is identified by urinary glucosuria and then random blood sugar is measured and this day is regarded as day 0. Animals with a serum glucose level of 220-300 mg/dL are selected to be used in this study. Rats are randomly separated into five groups for daily drug administration for 8 weeks: group 1: control nondiabetic rats given a vehicle only (0.5 mL/kg of 0.5% carboxy methyl celleluse orally), group 2: control diabetic rats given a vehicle, group 3: diabetic rats receiving Rosiglitazone (5 mg/kg orally), group 4: diabetic rats receiving losartan (2 mg/kg, orally), and group 5: diabetic rats receiving both Rosiglitazone and losartan
Rats
References

[1]. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953-6.

[2]. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996 Feb 2;39(3):665-8.

[3]. Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. J Neurochem. 2015 Aug;134(3):463-70.

[4]. Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol. 2011 Jun;79(6):1023-30.

[5]. Beneficial effects of rosiglitazone and losartan combination in diabetic rats. Can J Physiol Pharmacol. 2018 Mar;96(3):215-220.

Additional Infomation
Rosiglitazone Maleate is the maleate salt of rosiglitazone, an orally-active thiazolidinedione with antidiabetic properties and potential antineoplastic activity. Rosiglitazone activates peroxisome proliferator-activated receptor gamma (PPAR-gamma), a ligand-activated transcription factor, thereby inducing cell differentiation and inhibiting cell growth and angiogenesis. This agent also modulates the transcription of insulin-responsive genes, inhibits macrophage and monocyte activation, and stimulates adipocyte differentiation.
A thiazolidinedione that functions as a selective agonist for PPAR GAMMA. It improves INSULIN SENSITIVITY in adipose tissue, skeletal muscle, and the liver of patients with TYPE 2 DIABETES MELLITUS.
See also: Rosiglitazone (has active moiety); Glimepiride; Rosiglitazone Maleate (component of); Metformin Hydrochloride; Rosiglitazone Maleate (component of).
Drug Indication
Rosiglitazone is indicated in the treatment of type 2 diabetes mellitus: as monotherapy-in patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intoleranceas dual oral therapy in combination with-metformin, in patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin-a sulphonylurea, only in patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite monotherapy with a sulphonylureaas triple oral therapy in combination with-metformin and a sulphonylurea, in patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy (see section 4. 4).
Rosiglitazone is indicated as oral monotherapy in type 2 diabetes mellitus patients, particularly overweight patients, inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. Rosiglitazone is also indicated for oral combination treatment in type 2 diabetes mellitus patients with insufficient glycaemic control despite maximal tolerated dose of oral monotherapy with either metformin or a sulphonylurea: in combination with metformin particularly in overweight patients. in combination with a sulphonylurea only in patients who show intolerance to metformin or for whom metformin is contraindicated.
Rosiglitazone is indicated as oral monotherapy in type 2 diabetes mellitus patients, particularly overweight patients, inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. Rosiglitazone is also indicated for oral combination treatment in type 2 diabetes mellitus patients with insufficient glycaemic control despite maximal tolerated dose of oral monotherapy with either metformin or a sulphonylurea: - in combination with metformin particularly in overweight patients. ­- in combination with a sulphonylurea only in patients who show intolerance to metformin or for whom metformin is contraindicated.
Alzheimer's Disease
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H19N3O3S.C4H4O4
Molecular Weight
473.5
Exact Mass
473.125
Elemental Analysis
C, 55.81; H, 4.90; N, 8.87; O, 23.65; S, 6.77
CAS #
155141-29-0
Related CAS #
Rosiglitazone;122320-73-4;Rosiglitazone hydrochloride;302543-62-0
PubChem CID
5281055
Appearance
White to off-white solid powder
Density
1.4±0.1 g/cm3
Boiling Point
585ºC at 760 mmHg
Melting Point
235-240°C
Flash Point
307.6ºC
Index of Refraction
1.688
LogP
2.38
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
9
Heavy Atom Count
33
Complexity
588
Defined Atom Stereocenter Count
0
SMILES
CN(CCOC1=CC=C(C=C1)CC2C(=O)NC(=O)S2)C3=CC=CC=N3.C(=C\C(=O)O)\C(=O)O
InChi Key
SUFUKZSWUHZXAV-BTJKTKAUSA-N
InChi Code
InChI=1S/C18H19N3O3S.C4H4O4/c1-21(16-4-2-3-9-19-16)10-11-24-14-7-5-13(6-8-14)12-15-17(22)20-18(23)25-15;5-3(6)1-2-4(7)8/h2-9,15H,10-12H2,1H3,(H,20,22,23);1-2H,(H,5,6)(H,7,8)/b;2-1-
Chemical Name
(Z)-but-2-enedioic acid;5-[[4-[2-[methyl(pyridin-2-yl)amino]ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione
Synonyms
BRL 49653; BRL49653;BRL-49653;Rosiglitazone Maleate; Avandia; Avandaryl; BRL-49653C; BRL49653C; BRL 49653C; 155141-29-0; Avandia; Rosiglitazone XR; Rosiglitazone (maleate); Rosiglitazone Maleate [USAN]; BRL-49653C; Rosiglitzazone maleate; BRL-49653-C;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 94 mg/mL (198.5 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.28 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.28 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.28 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1119 mL 10.5597 mL 21.1193 mL
5 mM 0.4224 mL 2.1119 mL 4.2239 mL
10 mM 0.2112 mL 1.0560 mL 2.1119 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01706211 Completed Drug: BRL 49653C
Drug: Placebo
Diabetes Mellitus Non
Insulin Dependent Oral
Agent Therapy
National Taiwan University Hospital October 1998 Phase 3
NCT00785213 Completed Has Results Drug: Rosiglitazone 4 mg Tablets
Drug: Quinine Sulfate 324 mg Capsules
Healthy Mutual Pharmaceutical Company, Inc September 2008 Phase 1
NCT01100619 Completed Drug: rosiglitazone
Drug: XL184
Papillary Thyroid Cancer
Follicular Thyroid Cancer
Exelixis April 2010 Phase 1
NCT00369174 Completed Drug: rosiglitazone maleate Oral Leukoplakia National Cancer Institute (NCI) June 2006 Phase 2
Biological Data
  • Rosiglitazone maleate


    The PPARγ agonist rosiglitazone partially reverses the effect of GCN2 deficiency on liver and serum triglycerides and lipid droplet protein expression.PLoS One. 2013; 8(10): e75917.
  • Rosiglitazone maleate


    Administration of α-GalCer induces activation of CD4+ T cells in myometrial tissues that is reduced by rosiglitazone.



    Rosiglitazone maleate


    Administration of α-GalCer induces an expansion of activated CD1d-restricted iNKT cells in decidual tissues, which is blunted by rosiglitazone.J Immunol. 2016 Feb 1; 196(3): 1044–1059.
  • Rosiglitazone maleate


    Administration of α-GalCer induces activation of innate immune cells at the maternal-fetal interface that is blunted by rosiglitazone.

    Rosiglitazone maleate


    Rosiglitazone treatment reduces the rate of α-GalCer-induced late PTB by inducing PPARγ activation at the maternal-fetal interface.J Immunol. 2016 Feb 1; 196(3): 1044–1059.
  • Rosiglitazone maleate


    Body and organ weights of animals fed for 7 wk with either nonsupplemented (gray bar) or rosiglitazone-supplemented (black bar) diet.Endocrinology.2004 Jan;145(1):401-6.
  • Rosiglitazone maleate


    DXA of total-body BMD.



    Rosiglitazone maleate


    Micro-CT representative renderings of proximal tibia from control and rosiglitazone-treated animals were generated as described in Materials and Methods.Endocrinology.2004 Jan;145(1):401-6.
  • Rosiglitazone maleate


    Representative photomicrographs of cancellous tibia.



    Rosiglitazone maleate


    Liver histological cross-sections representative for each group.Endocrinology.2004 Jan;145(1):401-6.
Contact Us