Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Antibiotic
|
---|---|
ln Vitro |
Frequently present in pancreatic, colorectal and non-small cell lung carcinomas, oncogenic mutant K-Ras must be localised to the plasma membrane (PM) to be functional. Inhibitors of K-Ras PM localisation are therefore putative cancer chemotherapeutics. By screening a microbial extract library in a high content cell-based assay we detected the rare oligomycin class of Streptomyces polyketides as inhibitors of K-Ras PM localisation. Cultivation and fractionation of three unique oligomycin producing Streptomyces strains yielded oligomycins A-E (1-5) and 21-hydroxy-oligomycin A (6), together with the new 21-hydroxy-oligomycin C (7) and 40-hydroxy-oligomycin B (8). Structures for 1-8 were assigned by detailed spectroscopic analysis. Cancer cell viability screening confirmed 1-8 were cytotoxic to human colorectal carcinoma cells (IC50 > 3 μM), and were inhibitors of the ABC transporter efflux pump P-glycoprotein (P-gp), with 5 being comparable in potency to the positive control verapamil. Significantly, oligomycins 1-8 proved to be exceptionally potent inhibitors of K-Ras PM localisation (Emax 0.67-0.75 with an IC50 ~ 1.5-14 nM).[1]
|
Enzyme Assay |
Oligomycin D has a role as an EC 3.6.3.14 (H(+)-transporting two-sector ATPase) inhibitor, an antineoplastic agent and a nematicide. It is an oligomycin, a pentol, a triketone and an antibiotic antifungal agent. A macrolide antibiotic of the oligomycin group, obtained from Streptomyces rutgersensis. It is used in cytochemistry as a tool to inhibit various ATPases and to uncouple oxidative phosphorylation from electron transport and also clinically as an antifungal agent.
|
Toxicity/Toxicokinetics |
mouse LD50 oral 800 mg/kg
mouse LD50 intraperitoneal 18 mg/kg |
References | |
Additional Infomation |
Rutamycin has been reported in Kitasatospora aureofaciens with data available.
A macrolide antibiotic of the oligomycin group, obtained from Streptomyces rutgersensis. It is used in cytochemistry as a tool to inhibit various ATPases and to uncouple oxidative phosphorylation from electron transport and also clinically as an antifungal agent. See also: Rutamycin (annotation moved to). |
Molecular Formula |
C44H72O11
|
---|---|
Molecular Weight |
777.05
|
Exact Mass |
776.507
|
Elemental Analysis |
C, 68.01; H, 9.34; O, 22.65
|
CAS # |
1404-59-7
|
Related CAS # |
Oligomycin A;579-13-5;Oligomycin;1404-19-9;Oligomycin B;11050-94-5
|
PubChem CID |
5281902
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.15g/cm3
|
Boiling Point |
883.4ºC at 760 mmHg
|
Flash Point |
253ºC
|
Vapour Pressure |
0mmHg at 25°C
|
Index of Refraction |
1.544
|
LogP |
5.636
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
11
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
55
|
Complexity |
1360
|
Defined Atom Stereocenter Count |
17
|
SMILES |
CC[C@@H]1C=CC=CC[C@H](C)[C@@H](O)[C@](C)(O)C(=O)[C@H](C)[C@@H](O)[C@H](C)C(=O)[C@H](C)[C@@H](O)[C@H](C)C=CC(=O)O[C@@H]2[C@@H](C)[C@H](O[C@]3(C2)CC[C@@H](C)[C@@H](C[C@@H](O)C)O3)CC1 |t:3,5,31,&1:2,8,10,12,17,19,21,25,27,29,36,37,39,41,45,47,49|
|
InChi Key |
LVWVMRBMGDJZLM-WXPRFNGZSA-N
|
InChi Code |
InChI=1S/C44H72O11/c1-11-33-16-14-12-13-15-27(4)41(50)43(10,52)42(51)32(9)40(49)31(8)39(48)30(7)38(47)26(3)17-20-37(46)53-36-24-44(54-34(19-18-33)29(36)6)22-21-25(2)35(55-44)23-28(5)45/h12-14,16-17,20,25-36,38,40-41,45,47,49-50,52H,11,15,18-19,21-24H2,1-10H3/b13-12+,16-14+,20-17+/t25-,26-,27+,28+,29+,30-,31-,32-,33-,34-,35-,36-,38+,40+,41-,43+,44-/m1/s1
|
Chemical Name |
(1R,4E,5'R,6R,6'R,7S,8R,10S,11S,12R,14S,15R,16S,18E,20E,22S,25R,27S,29S)-22-ethyl-7,11,14,15-tetrahydroxy-6'-[(2S)-2-hydroxypropyl]-5',6,8,10,12,14,16,29-octamethylspiro[2,26-dioxabicyclo[23.3.1]nonacosa-4,18,20-triene-27,2'-oxane]-3,9,13-trione
|
Synonyms |
A 272; Oligomycin D; Oligomycin D; RUTAMYCIN; Rutamycin A; 26-Demethyloligomycin A; Rutamycinum; Rutamicina; Rutamycine; ...; 1404-59-7; Rutamycin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2869 mL | 6.4346 mL | 12.8692 mL | |
5 mM | 0.2574 mL | 1.2869 mL | 2.5738 mL | |
10 mM | 0.1287 mL | 0.6435 mL | 1.2869 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.