yingweiwo

RWJ-56110

Alias: RWJ 56110 RWJ56110RWJ-56110
Cat No.:V10086 Purity: ≥98%
RWJ-56110 is a potent, selective, peptidomimetic inhibitor that can suppress PAR-1 activation and internalization (binding IC50=0.44 uM), without affecting PAR-2, PAR-3 and PAR-4.
RWJ-56110
RWJ-56110 Chemical Structure CAS No.: 252889-88-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
25mg
50mg
100mg

Other Forms of RWJ-56110:

  • RWJ-56110 dihydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
RWJ-56110 is a potent, selective, peptidomimetic inhibitor that can suppress PAR-1 activation and internalization (binding IC50=0.44 uM), without affecting PAR-2, PAR-3 and PAR-4. RWJ-56110 inhibits platelet aggregation induced by SFLLRN-NH2 (IC50=0.16 μM) and thrombin (IC50=0.34 μM) with considerable selectivity relative to U46619 . RWJ-56110 blocks angiogenesis and the formation of new blood vessels in vivo. RWJ-56110 causes apoptosis.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The N-terminal extracellular domain of protease-activated receptors (PARs), a family of G-protein-coupled receptors, is cleaved by proteases to reveal a novel amino-terminal region that functions as a tethering ligand to activate the receptor. RWJ56110 exhibits significant selectivity in inhibiting human platelet aggregation produced by SFLLRN-NH2 (IC50=0.16 μM) and thrombin (IC50=0.34 μM), as compared to collagen and the thromboxane mimic U46619 [1]. At an IC50 of 3.5 μM, RWJ-56110 totally prevents thrombin-induced RASMC growth. Research has demonstrated that RWJ-56110 inhibits thrombin via RASMC calcium mobilization (IC50=0.12 μM), HMVEC (IC50=0.13 μM), and HASMC calcium mobilization (IC50=0.17 μM) [1]. RWJ56110 (0.1–10 μM; 24-96 hours) has a dose-dependent inhibitory effect on endothelial cell proliferation, with a half-maximum inhibitory concentration of about 10 μM [2]. Thymidine incorporation assay results show that RWJ56110 (0.1–10 μM; 6 hours) inhibits endothelial cell DNA synthesis. RWJ56110 suppresses cellular DNA synthesis in a dose-dependent manner in endothelial cells in a rapidly expanding state (50–60% confluence), although the inhibitory effect of PAR-1 antagonists is less noticeable in cells in a resting state (100% confluence). Reference [2]. Erk1/2 activation mediated by thrombin is inhibited in a concentration-dependent manner by RWJ56110 (0.1-10 μM; 15 min pretreatment). Nevertheless, the degree of Erk1/2 activation is somewhat decreased when endothelial cells are stimulated with FBS (final concentration 4%) [2]. The endothelial cell cycle progression is inhibited by RWJ56110 (30 μM; 24 h). The percentage of cells in S phase decreases as a result, while the alterations in the G1/M and G1 cell percentages are less noticeable [2].
Cell Assay
Western Blot Analysis [2]
Cell Types: Endothelial cells
Tested Concentrations: 0 μM; 3μM; 1μM; 3μM; 10 μM
Incubation Duration: 15 minutes of pretreatment
Experimental Results: Result in MAPK activation in endothelial cells.

Cell cycle analysis [2]
Cell Types: endothelial cells
Tested Concentrations: 0 μM; 3μM; 1μM; 3μM; 10 μM
Incubation Duration: 15 minutes of pretreatment
Experimental Results: diminished number of cells in S phase.
References
[1]. Andrade-Gordon, et al.Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. oc Natl Acad Sci U S A. 1999 Oct 26;96(22):12257-62.
[2]. Panagiota Zania, et al. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. J Pharmacol Exp Ther. 2006 Jul;318(1):246-54.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C41H43CL2F2N7O3
Molecular Weight
790.74
Exact Mass
789.2773
CAS #
252889-88-6
Related CAS #
RWJ-56110 dihydrochloride;2387505-58-8
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
O=C(NCC1=CC=CC=C1)[C@@H](NC([C@@H](NC(NC2=CC3=C(C=C2)C(CN4CCCC4)=CN3CC5=C(Cl)C=CC=C5Cl)=O)CC6=CC=C(F)C(F)=C6)=O)CCN
InChi Key
SWPAWRHBFNDXEU-BCRBLDSWSA-N
InChi Code
InChI=1S/C41H43Cl2F2N7O3/c42-32-9-6-10-33(43)31(32)25-52-24-28(23-51-17-4-5-18-51)30-13-12-29(21-38(30)52)48-41(55)50-37(20-27-11-14-34(44)35(45)19-27)40(54)49-36(15-16-46)39(53)47-22-26-7-2-1-3-8-26/h1-3,6-14,19,21,24,36-37H,4-5,15-18,20,22-23,25,46H2,(H,47,53)(H,49,54)(H2,48,50,55)/t36-,37-/m0/s1
Chemical Name
(2S)-4-amino-2-[[(2S)-2-[[1-[(2,6-dichlorophenyl)methyl]-3-(pyrrolidin-1-ylmethyl)indol-6-yl]carbamoylamino]-3-(3,4-difluorophenyl)propanoyl]amino]-N-(phenylmethyl)butanamide
Synonyms
RWJ 56110 RWJ56110RWJ-56110
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2646 mL 6.3232 mL 12.6464 mL
5 mM 0.2529 mL 1.2646 mL 2.5293 mL
10 mM 0.1265 mL 0.6323 mL 1.2646 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Inhibitory effects of RWJ-56110 on increasing concentrations of PAR-1 agonists. Platelet aggregation induced by thrombin (A) or by SFLLRN-NH2 (B). Platelet calcium mobilization induced by thrombin (C) or by SFLLRN-NH2 (D). Calcium mobilization induced by thrombin in lung myofibroblasts from PAR-1-deficient mice, transfected with human PAR-1 (E), or in RASMC (F).
  • Expression of PAR-4. Southern blot analysis of PCRs on cDNA samples from RNA of HASMC, gel-filtered platelets, or CHRF-288-11 cells with RT. Control PCRs were done in parallel on each untreated RNA sample (−RT). The primers for the PCRs, the products of which were Southern blotted and probed with the appropriate nested primer probe, corresponded to PAR-4 and the positive control β-actin.
  • Inhibition of internalization of cleaved PAR-1 by RWJ-56110. CHRF-288-11 cells were pretreated with increasing concentrations of RWJ-56110 with or without α-thrombin. The surface expression of PAR-1 was monitored by flow cytometry with SPAN12 (solid bars) and ATAP2 (open bars).
Contact Us