yingweiwo

SBE-β-CD (captisol)

Alias: Sodium sulfobutylether β-cyclodextrin; SBE-β CD; SBE-β-CD; SBE β-CD; SBE β CD; SBE-beta-CD; Sulfobutylether beta-cyclodextrin; Captisol; beta-cyclodextrin sulfobutyl ether sodium salts
Cat No.:V3041 Purity: ≥98%
SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs.
SBE-β-CD (captisol)
SBE-β-CD (captisol) Chemical Structure CAS No.: 182410-00-0
Product category: Biochemical Assay Reagents
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
1g
5g
10g
25g
50g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

SBE-β-CD, also named as Sulfobutylether beta-cyclodextrin or Captisol, is a highly water-soluble anionic derivative of cyclodextrin that is widely used as an excipient or a formulating agent to increase the solubility of poorly soluble drugs. The sodium sulfonate salt of it is separated from the lipophilic cavity by a butyl ether spacer moiety, namely the sulfobutylether (SBE). SBE-β-CD can form non-covalent inclusion complexes with drug molecules, by so doing, it can improve drug stability, solubility and safety, reduce toxicity, cover up bad smell, and control drug release rate. As an excipient, SBE-β-CD has been used in various formulation including injection, oral, nasal and eye medication. Modification of the structure by charged functional groups can improve the binding affinity of cyclodextrins for oppositely charged guests, therefore it has a specific affinity for drugs containing nitrogen atoms.

Biological Activity I Assay Protocols (From Reference)
Targets
excipient and/or formulating agent
ln Vitro
SBE-β-CD, a negatively charged cyclic hydrophilic oligosaccharide in aqueous media, is β-CD that has been chemically modified. SBE7-β-CD shows robust solubilizing effects over a wide concentration range, while β-CD is only effective as a solubilizing agent at low doses [1].
ln Vivo
How to prepare 20% SBE-β-CD in Normal Saline? Guidelines (This is our suggested protocol; it should be adjusted to suit your particular requirements; it is merely meant to serve as a guide).
1). A clear 0.9% saline solution can be made by dissolving 0.9 g of NaCl in 100 mL of distilled water.
2). Weigh 2 grams of dry SBE-β-CD.
3). To make 10 mL of a 20% (w/v) solution, dissolve 2 g of SBE-β-CD in 0.9% saline. These might need to be heated (for roughly 30 minutes at 37°C) or sonicated (20–40 kHz, 30 seconds, repeat three times). Before using, dissolve any precipitates that are seen by heating to 37°C and vortexing.
Animal Protocol
A 300 g rat is administered with 1 mL of a 0.1 M SBE-β-CD solution containing 5.64 mg of Compound 1, and assuming an extracellular volume of 90 mL, less than 0.1% of the complex would rapidly dissociate due to the initial effects of dilution. This calculation, combined with the changing blood to plasma ratio in the presence of SBE-β-CD, provides a reasonable explanation for the observed differences in the blood and plasma profiles of Compound 1 after intravenous administration in either the cyclodextrin or cyclodextrin-free formulations. After IV administration of the cyclodextrin formulation, Compound 1 would initially be prevented from distributing into erythrocytes thereby resulting in a whole blood to plasma ratio of less than one. Subsequently, clearance of SBE-β-CD from the circulation would lead to changes in the complexation equilibrium such that the unbound fraction of Compound 1 would increase, thereby reestablishing normal blood to plasma partitioning (i.e. in favour of whole blood) and clearance.
Rats
References

[1]. Influence of sulfobutyl ether beta-cyclodextrin (Captisol) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion.Int J Pharm. 2008 Feb 28;350(1-2):188-196.

[2]. Alteration of the intravenous pharmacokinetics of a synthetic ozonide antimalarial in the presence of a modified cyclodextrin. J Pharm Sci. 2006 Feb;95(2):256-67.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C50H84NA2O41S2
Exact Mass
1450.372
CAS #
182410-00-0
Related CAS #
182410-00-0
PubChem CID
135393453
Appearance
White to off-white solid powder
Hydrogen Bond Donor Count
19
Hydrogen Bond Acceptor Count
41
Rotatable Bond Count
19
Heavy Atom Count
95
Complexity
2500
Defined Atom Stereocenter Count
35
SMILES
[R]O[C@@H]1[C@H](O[R])[C@H](O[C@@H]2[C@H](O[R])C(O[R])[C@H](O3)[C@@H](CO[R])O2)[C@@H](CO[R])O[C@@H]1O[C@H]4[C@H](O[R])[C@@H](O[R])[C@@H](O[C@H]5[C@H](O[R])[C@@H](O[R])[C@@H](O[C@@H]6C(O[R])[C@H](O[R])[C@H](O[C@@H]7[C@@H](O[R])[C@H](O[R])[C@H](O[C@@H]8[C@@H](O[R])[C@H](O[R])[C@H]3O[C@H]8CO[R])O[C@H]7CO[R])O[C@H]6CO[R])O[C@@H]5CO[R])O[C@@H]4CO[R].[R= H 21-m or C4H8SO3-Na+ m , m=6.0-7.1]
InChi Key
RGQYVQYXCZODQW-XRONRANPSA-L
InChi Code
InChI=1S/C50H86O41S2.2Na/c51-9-16-36-23(57)29(63)45(78-16)86-38-18(11-53)80-47(31(65)25(38)59)88-40-20(13-55)82-49(33(67)27(40)61)90-42-22(15-76-5-1-3-7-92(70,71)72)84-50(43(35(42)69)77-6-2-4-8-93(73,74)75)91-41-21(14-56)83-48(34(68)28(41)62)89-39-19(12-54)81-46(32(66)26(39)60)87-37-17(10-52)79-44(85-36)30(64)24(37)58;;/h16-69H,1-15H2,(H,70,71,72)(H,73,74,75);;/q;2*+1/p-2/t16-,17-,18-,19+,20+,21+,22+,23-,24-,25-,26+,27+,28+,29-,30-,31-,32+,33+,34+,35-,36-,37-,38-,39+,40+,41+,42+,43+,44-,45-,46+,47-,48+,49+,50+;;/m0../s1
Chemical Name
beta-cyclodextrin sulfobutyl ether sodium salts;
[[(1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18S,20S,21R,23S,25S,26R,28S,30S,31R,33R,35R,36R,37R,38S,39S,40S,41S,42S,43S,44R,45R,46S,47R,48R,49R)-36,37,38,39,40,41,42,43,44,45,46,48,49-tridecahydroxy-5,15,20,25,30,35-hexakis(hydroxymethyl)-47-(4-sulfonatobutoxy)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontan-10-yl]methoxy]butane-1-sulfonate
Synonyms
Sodium sulfobutylether β-cyclodextrin; SBE-β CD; SBE-β-CD; SBE β-CD; SBE β CD; SBE-beta-CD; Sulfobutylether beta-cyclodextrin; Captisol; beta-cyclodextrin sulfobutyl ether sodium salts
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:6 mg/mL
Water:>100 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us