Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
Sennoside A (formerly also known as NSC112929; NSC-112929), used as a laxative and an anti-constipation agent, is a naturally occurring dianthrone glycoside compound isolated from Rhei Rhizoma and senna leaf. It can cause purgative actions in the intestine and has been used to clean out the intestines before a bowel examination/surgery. Sennoside A and B have identical molecular weights and formula. Sennosides were known as laxatives causing purgative actions through the biotransformation of rhein anthrone. Sennoside A was reported to have regionally differential effects on spontaneous contractions of colon.
ln Vitro |
Sennoside A has the ability to inhibit several versions of RDDP and RNase H. It has been observed that IC50s of 78 μM (K103N RT), 21.3 μM (Y181C RT), and 64 μM (Y188L RT) for various variants of RDDP are inhibited. 18.4 μM for N474A RT and 17.7 μM for Q475A RT, respectively, were the IC50s[3]. HIV-1 recombinant CAT virus, pseudotyped with the envelope glycoprotein of the laboratory-adapted T-tropic virus HXBc2, infects Jurka cells. Infected cells' CAT activity is greatly inhibited by sensnoside A (5–20 μM; 72 h)[3].
|
||
---|---|---|---|
ln Vivo |
Type 2 diabetes (T2D) mice's gut microbiome composition is changed by sensnoside A (25 mg/kg, 50 mg/kg; intragastric gavage for 12 weeks), which also has anti-obesity effects[3]. In the ileum of genetically faulty animals, sensnoside A also raises tight junction proteins and decreases inflammation[3].
|
||
Animal Protocol |
|
||
Toxicity/Toxicokinetics |
Hepatotoxicity
Use of senna in the recommended doses for a limited period of time has been associated with few side effects, most of which are mild and transient and related to its laxative action. With longer term and higher dose use of senna, however, adverse events have been described including several cases of clinically apparent liver injury. The time to onset of liver injury was usually after 3 to 5 months of use, and the pattern of serum enzyme elevations was hepatocellular. The liver injury was usually mild-to-moderate in severity and resolved rapidly with discontinuation. In at least one instance, reexposure led to rapid recurrence of liver injury. Immunoallergic features and autoimmune markers were not present in the published cases. In addition, a related plant commonly known as coffee senna or Cassia orientalis has been linked to many instances of acute, severe toxicity with encephalopathy, myopathy and hepatic dysfunction. Outbreaks of “hepato-myo-encephopathy” of unknown cause among children occurred yearly in Uttar Pradesh, India typically between September and November. Investigation eventually identified Cassia occidentalis ingestion as the probable cause, typically occurring in children who eat the leaves or pods of the common flowering weed. While Cassia occidentalis has also been used to prepare tea, the amount ingested was minimal. In children, and rarely in adults, the presentation was precipitous with nausea, vomiting, tremor, abnormal and violent behavior, grimacing and self-mutilation followed by stupor and coma at which time serum aminotransferase and bilirubin levels were typically elevated. In severe instances, the liver injury was progressive, serum ammonia and INR levels rose and patients developed coma, convulsions and status epilepticus that was unresponsive to therapy. Autopsies revealed hepatic necrosis and cholestasis. A similar pattern of symptoms and injury occurs in animals that consume Cassia occidentalis. Whether this syndrome has a similar pathogenesis to the rare instance of hepatic injury attributed to typical senna (Cassia acutifolia or angustifolio) that is used as a laxative is unknown. Likelihood score: D (possible rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Although an early uncontrolled report using an old senna product found increased frequency of diarrhea in breastfed infants, several controlled studies using modern senna products found no effect on the infant. Usual doses of senna are acceptable to use during breastfeeding. ◉ Effects in Breastfed Infants After administration of 3.6 mL of senna fluidextract on day 5 postpartum, a laxative effect on the bowels was observed in 6 of 10 infants. In another observational study, no cases of diarrhea were observed among the breastfed infants of 148 mothers who received 2 teaspoonfuls of Senokot (equivalent to 700 mg of senna pod) on day 3 postpartum. Fifty mothers who were in the first day postpartum received senna equal to 450 mg of senna pod. Additional doses were given on subsequent days if needed. None of their breastfed infants were noted to have any markedly abnormal stools, although all of the infants also received supplemental feedings. In a randomized, nonblinded study, 35 mothers were given tablets containing a total of 14 mg of standardized senna extract once daily for 2 weeks starting in the immediate postpartum period. Six of the 37 breastfed infants were reported to have diarrhea which was a higher percentage than with other nonabsorbable laxatives in the study. Sixteen women were given 800 mg of powdered senna containing 24 mg of sennosides. None of their breastfed infants had any abnormal stools. A randomized, double-blind trial compared commercial senna tablets (Senokot) in a dose of 2 tablets (14 mg sennosides a and b) twice daily for 8 doses started on the first day postpartum to placebo. Of the women in the study, 126 breastfed their infants and took senna while 155 control mothers breastfed their infants. There was no difference in the percentages of infants in the active and control groups with loose stools or diarrhea. Twenty postpartum mothers were given a laxative containing plantango seeds (psyllium) and senna equivalent to 15 mg of sennosides a and b daily on days 2 to 4 postpartum. Of the 11 infants who were breastfed, none had any loose stools. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
||
References |
|
||
Additional Infomation |
Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992)
Sennoside A is a member of the class of sennosides that is rel-(9R,9'R)-9,9',10,10'-tetrahydro-9,9'-bianthracene-2,2'-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4', by beta-D-glucopyranosyloxy groups at positions 5 and 5', and by oxo groups at positions 10 and 10'. The exact stereochemisty at positions 9 and 9' is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A has been reported in Rheum palmatum, Rheum tanguticum, and other organisms with data available. Senokot is a standardized, concentrated preparation, by Purdue, containing the anthraquinone glycosides sennosides extracted from senna leaves with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. |
Molecular Formula |
C42H38O20
|
|
---|---|---|
Molecular Weight |
862.74
|
|
Exact Mass |
862.195
|
|
CAS # |
81-27-6
|
|
Related CAS # |
|
|
PubChem CID |
73111
|
|
Appearance |
Light yellow to yellow solid powder
|
|
Density |
1.7±0.1 g/cm3
|
|
Boiling Point |
1144.8±65.0 °C at 760 mmHg
|
|
Melting Point |
200-240ºC
|
|
Flash Point |
348.6±27.8 °C
|
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
|
Index of Refraction |
1.763
|
|
LogP |
1.88
|
|
Hydrogen Bond Donor Count |
12
|
|
Hydrogen Bond Acceptor Count |
20
|
|
Rotatable Bond Count |
9
|
|
Heavy Atom Count |
62
|
|
Complexity |
1550
|
|
Defined Atom Stereocenter Count |
12
|
|
SMILES |
C1=CC2=C(C(=C1)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O)C(=O)C4=C([C@@H]2[C@@H]5C6=C(C(=CC=C6)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O)O)O)C(=O)C8=C5C=C(C=C8O)C(=O)O)C=C(C=C4O)C(=O)O
|
|
InChi Key |
IPQVTOJGNYVQEO-KGFNBKMBSA-N
|
|
InChi Code |
InChI=1S/C42H38O20/c43-11-23-31(47)35(51)37(53)41(61-23)59-21-5-1-3-15-25(17-7-13(39(55)56)9-19(45)27(17)33(49)29(15)21)26-16-4-2-6-22(60-42-38(54)36(52)32(48)24(12-44)62-42)30(16)34(50)28-18(26)8-14(40(57)58)10-20(28)46/h1-10,23-26,31-32,35-38,41-48,51-54H,11-12H2,(H,55,56)(H,57,58)/t23-,24-,25-,26-,31-,32-,35+,36+,37-,38-,41-,42-/m1/s1
|
|
Chemical Name |
(9R)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracen-9-yl]-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracene-2-carboxylic acid
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 6.25 mg/mL (7.24 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 62.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (2.41 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.1591 mL | 5.7955 mL | 11.5910 mL | |
5 mM | 0.2318 mL | 1.1591 mL | 2.3182 mL | |
10 mM | 0.1159 mL | 0.5795 mL | 1.1591 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT02665624 | Completed | Drug: Senna and stewed apricot juice Drug: Senna alone |
Colonoscopy Preparation | Camlıca Erdem Hospital | April 2015 | Phase 4 |
NCT02239510 | Terminated Has Results | Drug: Senna Drug: Linzess |
Chronic Idiopathic Constipation | TriHealth Inc. | September 2014 | Not Applicable |
NCT00571896 | Completed | Drug: Senna+ docusate Drug: placebo |
Constipation | Hartford Hospital | January 2008 | Phase 2 Phase 3 |
NCT02008864 | Completed | Drug: Senna Drug: Placebo |
End Stage Renal Disease Pruritus |
Shiraz University of Medical Sciences | August 2011 | Not Applicable |