Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Targets |
S1PR1 ( EC50 = 0.39 nM ); S1PR5 ( EC50 = 0.98 nM ); S1PR4 ( EC50 = 750 nM ); S1PR3 ( EC50 > 1000 nM ); S1PR2 ( EC50 > 10000 nM )
|
||
---|---|---|---|
ln Vitro |
|
||
ln Vivo |
|
||
Enzyme Assay |
After the cells are homogenized, they are centrifuged for 30 minutes at 4°C at 26900 × g. In 20 mM HEPES (pH 7.4), 100 mM NaCl, 10 mM MgCl2, 1 mM EDTA, and 0.1% fat-free BSA, membranes are re-suspended at a protein concentration of 2-3 mg/mL. Membranes (75 mg protein/mL in 50 mM HEPES, 100 mM NaCl, 10 mM MgCl2, 20 μg/mL saponin and 0.1% fat-free BSA; pH 7.4), 5 mg/mL with a wheat-germ agglutinin-coated scintillation proximity assay-bead, and 10 μM GDP for 10–15 min) are used in the GTPγ[35S] binding technique. 200 pM GTPγ[35S] is added to initiate the GTPγ[35S]-binding reaction. Following 120 minutes at room temperature, the plates undergo a 10-minute 300 × g centrifugation before being tallied.
|
||
Cell Assay |
Analysis of CHO cells using flow cytometry reveals antagonist-mediated internalization of S1P1 receptors. An agonist is added to standard culture medium and Myc-tag hS1P1 cells are incubated for 1 hour at 37°C. The cells are then washed with PBS. While one aliquot is left in culture medium (without an agonist) at 37°C for three hours, the other is kept on ice for three hours (or twelve hours). First, the cells are incubated for 60 minutes at 4°C with either 4 μg/mL monoclonal mouse anti-C-myc IgG1 antibody or isotype control mouse IgG1. Next, they are incubated with 1 μg/mL of goat anti-mouse secondary conjugates that have been labeled with Alexa488, which is a fluorescent dye. Using 10,000 viable cells per sample, the cells are measured using flow cytometry.
|
||
Animal Protocol |
|
||
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The time (Tmax) to attain maximum plasma concentrations (Cmax) after oral administration of immediate-release oral doses of siponimod was found to be approximately 4 hours ( with a range 3 - 8 hours). Siponimod is heavily absorbed (at a rate greater than or equal to 70%). The absolute oral bioavailability of siponimod is about 84%. Steady-state concentrations were attained after approximately 6 days of daily administration of a single dose of siponimod. **Effects of food on absorption** Food ingestion leads to delayed siponimod absorption (the median Tmax increased by approximately 2-3 hours). Food intake has no effect on the systemic exposure of siponimod (Cmax and AUC). Therefore, siponimod may be taken without regard to food. Siponimod is eliminated from the systemic circulation mainly due to metabolism, and subsequent biliary/fecal excretion. Unchanged siponimod was not detected in urine. Siponimod distributes to body tissues with an average volume of distribution of 124 L. Siponimod fraction mesaured in plasma is 68% in humans. Animal studies demonstrate that siponimod readily crosses the blood-brain-barrier. Apparent systemic clearance of 3.11 L/h has been estimated in MS patients. Metabolism / Metabolites Siponimod is extensively metabolized, mainly by CYP2C9 enzyme (79.3%), and subsequently by CYP3A4 enzyme (18.5%). The pharmacological activity of the main metabolites M3 and M17 is not expected to be responsible for the clinical effect and the safety of siponimod in humans. Biological Half-Life The apparent elimination half-life is approximately 30 hours. |
||
Toxicity/Toxicokinetics |
Hepatotoxicity
In large controlled trials of siponimod in patients with multiple sclerosis, serum ALT elevations were common, typically arising during the first 3 months of treatment. The elevations were generally mild and asymptomatic, and they often returned to baseline values even with continuation of treatment or within 3 months of stopping. Aminotransferase elevations above 3 times upper limit of normal (ULN) were reported in 6% to 8% of siponimod recipients compared to less than 2% of placebo recipients. In these prelicensure clinical trials, there were no cases of acute hepatitis or clinically apparent liver injury but elevations in liver tests led to discontinuation in 1% if subjects. While siponimod is associated with lymphopenia and long term therapy is associated with risk for reactivation of herpes simplex and zoster infections, it has not been linked to cases of reactivation of hepatitis B, although one such instance has been reported with fingolimod. Thus, mild-to-moderate and transient serum enzyme elevations during therapy are not uncommon, but clinically apparent liver injury with jaundice due to siponimod has not been reported, although the clinical experience with its use has been limited. Likelihood score: E* (suspected but unproven cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Although siponimod is highly bound in maternal plasma and unlikely to reach the breastmilk in large amounts, it is potentially toxic to the breastfed infant. Because there is no published experience with siponimod during breastfeeding, expert opinion generally recommends that the closely related drug fingolimod should be avoided during breastfeeding, especially while nursing a newborn or preterm infant. However, the manufacturer's labeling does not recommend against the use of siponimod in breastfeeding. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. ◈ What is siponimod? Siponimod (Mayzent®) is a medication approved to treat relapsing forms of multiple sclerosis (MS), including clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease. For information on multiple sclerosis, please see the MotherToBaby fact sheet at: https://mothertobaby.org/fact-sheets/multiple-sclerosis/.Sometimes when people find out they are pregnant, they think about changing how they take their medication, or stopping their medication altogether. However, it is important to talk with your healthcare providers before making any changes to how you take this medication. Your healthcare providers can talk with you about the benefits of treating your condition and the risks of untreated illness during pregnancy. ◈ I am taking siponimod, but I would like to stop taking it before becoming pregnant. How long does the drug stay in my body? People eliminate medication at different rates. In healthy adults it takes up to 10 days, on average, for most of the siponimod to be gone from the body. ◈ I take siponimod. Can it make it harder for me to get pregnant? It is not known if siponimod can make it harder to become pregnant. ◈ Does taking siponimod increase the chance for miscarriage? Miscarriage is common and can occur in any pregnancy for many different reasons. According to the product label, experimental animal studies reported an increase in pregnancy loss. Studies have not been done in human pregnancy to see if siponimod increases the chance for miscarriage. ◈ Does taking siponimod increase the chance of birth defects? Every pregnancy starts out with a 3-5% chance of having a birth defect. This is called the background risk. According to the product label, experimental animal studies reported an increased chance for birth defects. Studies have not been done in human pregnancy to see if siponimod increases the chance for birth defects above the background risk. ◈ Does taking siponimod in pregnancy cause other pregnancy-related problems? According to the product label, experimental animal studies reported a chance of low birth weight. Studies have not been done in human pregnancy to see if siponimod increases the chance for pregnancy-related problems such as preterm delivery (birth before week 37) or low birth weight (weighing less than 5 pounds, 8 ounces [2500 grams] at birth). ◈ Does taking siponimod in pregnancy affect future behavior or learning for the child? Studies have not been done to see if siponimod can cause behavior or learning issues for the child. ◈ Breastfeeding while taking siponimod: Siponimod has not been studied for use while breastfeeding. It is not known if it can enter human breastmilk or how it might affect a nursing child. If you are taking siponimod while breastfeeding and you suspect the baby has any symptoms contact the child’s healthcare provider. Be sure to talk to your healthcare provider about all of your breastfeeding questions ◈ If a male takes siponimod, could it affect fertility (ability to get partner pregnant) or increase the chance of birth defects? Studies have not been done to see if siponimod could affect male fertility or increase the chance of birth defects. In general, exposures that fathers or sperm donors have are unlikely to increase the risks to a pregnancy. For more information, please see the MotherToBaby fact sheet Paternal Exposures at https://mothertobaby.org/fact-sheets/paternal-exposures-pregnancy/. Protein Binding Protein binding of siponimod is higher than 99.9% in healthy patients as well as hepatic and renal impaired patients. Because of the high plasma protein binding of siponimod, hemodialysis is not likely to change the total and unbound siponimod concentration and no dose adjustments are expected based on this. |
||
References | |||
Additional Infomation |
Pharmacodynamics
**Immune system effects** Siponimod causes a dose-dependent decrease of the peripheral blood lymphocyte count within 6 hours of the first dose, caused by the reversible accumulation of lymphocytes in lymphoid tissues, due to lack of lymphocyte release. This results in a decrease in the inflammation that is involved in multiple sclerosis. Lymphocyte counts return to normal in 90% of patients within 10 days after the cessation of therapy. **Effects on heart rate and rhythm** Siponimod causes a temporary decrease in heart rate and atrioventricular conduction upon beginning treatment. The maximum fall in heart rate is observed in the first 6 hours post ingestion. Autonomic heart responses, including diurnal variation of heart rate and response to exercise activities, are not altered by siponimod treatment. **Effects on pulmonary function** Dose-dependent decreases in absolute forced expiratory volume over a time frame of 1 second were noted in siponimod-treated patients and were higher than in patients taking placebo. |
Molecular Formula |
C62H74F6N4O10
|
---|---|
Molecular Weight |
632.68
|
Exact Mass |
1148.53
|
Elemental Analysis |
C, 64.80; H, 6.49; F, 9.92; N, 4.88; O, 13.92
|
CAS # |
1234627-85-0
|
Related CAS # |
Siponimod; 1230487-00-9
|
PubChem CID |
44599207
|
Appearance |
Solid powder
|
Melting Point |
111-112
|
LogP |
4.8
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
37
|
Complexity |
777
|
Defined Atom Stereocenter Count |
0
|
SMILES |
FC(C1C=C(CO/N=C(/C)\C2C=CC(=C(C=2)CC)CN2CC(C(=O)O)C2)C=CC=1C1CCCCC1)(F)F.FC(C1C=C(CO/N=C(/C)\C2C=CC(=C(C=2)CC)CN2CC(C(=O)O)C2)C=CC=1C1CCCCC1)(F)F.OC(/C=C/C(=O)O)=O
|
InChi Key |
JNLIKIBISICTMS-PEJBKAKVSA-N
|
InChi Code |
InChI=1S/2C29H35F3N2O3.C4H4O4/c2*1-3-21-14-23(10-11-24(21)15-34-16-25(17-34)28(35)36)19(2)33-37-18-20-9-12-26(22-7-5-4-6-8-22)27(13-20)29(30,31)32;5-3(6)1-2-4(7)8/h2*9-14,22,25H,3-8,15-18H2,1-2H3,(H,35,36);1-2H,(H,5,6)(H,7,8)/b2*33-19+;2-1+
|
Chemical Name |
(E)-but-2-enedioic acid;1-[[4-[(E)-N-[[4-cyclohexyl-3-(trifluoromethyl)phenyl]methoxy]-C-methylcarbonimidoyl]-2-ethylphenyl]methyl]azetidine-3-carboxylic acid
|
Synonyms |
NVP-BAF-312; NVP-BAF 312; NVP-BAF312-NX; NVP-BAF312; NVP-BAF312-AEA; Siponimod fumarate; Siponimod; Mayzent; WHO 9491; WHO-9491; WHO9491; BAF-312; BAF 312; Siponimod hemifumarate; NVP-BAF312-AEA; Siponimod hemifumaric acid; Z7G02XZ0M6; Siponimod fumarate (USAN); Siponimod fumarate [USAN];BAF312
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5806 mL | 7.9029 mL | 15.8058 mL | |
5 mM | 0.3161 mL | 1.5806 mL | 3.1612 mL | |
10 mM | 0.1581 mL | 0.7903 mL | 1.5806 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00422175 | Completed | Drug: BAF 312 | Healthy | Novartis | October 2006 | Phase 1 |
NCT01565902 | Completed | Drug: BAF312 | Hepatic Impairment | Novartis Pharmaceuticals | October 2012 | Phase 1 |
NCT01904214 | Completed | Drug: BAF312 | Renal Impairment | Novartis Pharmaceuticals | July 2013 | Phase 1 |
NCT03338998 | Completed | Drug: BAF312 solution Drug: BAF312 tablet |
Hemorrhagic Stroke Intracerebral Hemorrhage (ICH) |
Novartis Pharmaceuticals | December 24, 2017 | Phase 2 |
NCT00879658 | Completed | Drug: BAF312 Drug: Placebo |
Relapsing-remitting Multiple Sclerosis |
Novartis Pharmaceuticals | March 30, 2009 | Phase 2 |