yingweiwo

Sivelestat sodium

Alias: Sivelestat sodium, ONO5046-Na, Sodium sivelestat, EI546 sodium, LY544349 sodium; ONO5046, LY544349, EI546; ONO 5046; ONO5046; ONO-5046; LY544349; LY-544349; LY 544349; EI 546 sodium salt hydrate, Elaspol sodium salt hydrate, LY 544349 sodium salt hydrate, Trade name: Elaspol.
Cat No.:V2636 Purity: ≥98%
Sivelestat sodium, the sodium salt of Sivelestat (also known as ONO5046; LY544349; EI546), is a novel, potent and competitive inhibitor of human neutrophil elastase (HNE) with IC50value of44 nM andKi of 200 nM; it also inhibited leukocyte elastase obtained from rabbit, rat, hamster and mouse.
Sivelestat sodium
Sivelestat sodium Chemical Structure CAS No.: 150374-95-1
Product category: Elastase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Sivelestat sodium:

  • Sivelestat
  • Sivelestat sodium tetrahydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Sivelestat sodium, the sodium salt of Sivelestat (also known as ONO5046; LY544349; EI546), is a novel, potent and competitive inhibitor of human neutrophil elastase (HNE) with IC50 value of 44 nM and Ki of 200 nM; it also inhibited leukocyte elastase obtained from rabbit, rat, hamster and mouse. ONO-5046 did not inhibit trypsin, thrombin, plasmin, plasma kallikrein, pancreas kallikrein, chymotrypsin and cathepsin G even at 100 microM. In in vivo studies, ONO-5046 suppressed lung hemorrhage in hamster by intratracheal administration and increase of skin capillary permeability in guinea pig by intravenous administration. It is used in the treatment of acute respiratory failure. Preliminary studies show Sivelestat may also improve neuropathic pain.

Biological Activity I Assay Protocols (From Reference)
Targets
Human neutrophil elastase(IC50 = 44 nM; Ki=200 nM)
ln Vitro
Even at 100 μM, sivelestat (ONO-5046) does not inhibit chymotrypsin, cathepsin G, pancreatic kallikrein, thrombin, plasmin, plasma kallikrein, or plasma kallikrein[1]. The IC50 values of Sivelestat (ONO-5046) for human, rabbit, rat, hamster, and mouse neutrophil elastase are 44 nM, 36 nM, 19 nM, 37 nM, and 49 nM, respectively[1].
ln Vivo
Human neutrophil elastase induces both the suppression of lung hemorrhage in hamsters (ID50 = 82 pg/kg) and the increase of skin capillary permeability in guinea pigs (ID50 = 9.6 mg/kg) when sedelestat (ONO-5046, 0.021-2.1 mg/kg, intratracheally) is administered intravenously[1]. In rats, sivelestat (10 mg/kg) infused via the tail vein reduces lung damage following hemorrhagic shock[2]. In the rat bladder, ivelestat (15, 60 mg/kg, ip) prevents ischemia-reperfusion injury[3].
Enzyme Assay
ONO-5046, N-[2-[4-(2,2-Dimethylpropionyloxy)phenylsulfonylamino] aminoacetic acid, competitively inhibited human neutrophil elastase (IC50 = 0.044 microM, Ki = 0.2 microM). It also inhibited leukocyte elastase obtained from rabbit, rat, hamster and mouse. However, ONO-5046 did not inhibit trypsin, thrombin, plasmin, plasma kallikrein, pancreas kallikrein, chymotrypsin and cathepsin G even at 100 microM[1].
Animal Protocol
Animal/Disease Models: Male Golden hamsters, weighing 90 to 110 g[1].
Doses: 0.021-2.1 mg/kg.
Route of Administration: Intratracheally five min before HNE injection.
Experimental Results: Dramatically and dosedependently suppressed the lung hemorrhage.

Animal/Disease Models: Male SD (Sprague-Dawley) rats weighing 350-400 g[2].
Doses: 10 mg/kg.
Route of Administration: Continuous infusion via the tail vein at 10 mg/kg/h for 60 min during the resuscitation phase.
Experimental Results: Greatly suppressed lung injury, as revealed by the decreased histological damage. Dramatically ameliorated HSR-induced lung injury. Markedly diminished the levels of TNF-α and iNOS gene.

Animal/Disease Models: Male Sprague Dawley rats, 8 weeks old and weighing 250-320 g[3].
Doses: 15 mg/kg or 60 mg/kg.
Route of Administration: IP.
Experimental Results: diminished the blood flow in the bladder during reperfusion phase compared to the IR group.
References
[1]. Kawabata K, et al. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem Biophys Res Commun. 1991 Jun 14;177(2):814-20.
[2]. Yuichiro Toda, et al. A neutrophil elastase inhibitor, sivelestat, ameliorates lung injury after hemorrhagic shock in rats. Int J Mol Med. 2007 Feb;19(2):237-43.
[3]. Tomoharu Kono, et al. Neutrophil elastase inhibitor, sivelestat sodium hydrate prevents ischemia-reperfusion injury in the rat bladder. Mol Cell Biochem. 2008 Apr;311(1-2):87-92.
[4]. Adeleh Sahebnasagh, et al. Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J Clin Pharm Ther. 2
Additional Infomation
In the present study, we evaluated the effect of neutrophil elastase inhibitor, sivelestat sodium hydrate on ischemia-reperfusion injury in the rat bladder. Rat abdominal aorta was clamping with a small clip to induce ischemia-reperfusion injury in the bladder. Eight-week-old male Sprague Dawley rats were divided into four groups; sham-operated control rats, 30 min ischemia-60 min reperfusion (IR) rats, and IR rats treated with 15 or 60 mg/kg of sivelestat sodium hydrate. Sixty minutes prior to induction of ischemia, sivelestat sodium hydrate was administrated intraperitoneally. Real-time monitoring of blood flow and nitric oxide (NO) release were measured simultaneously with a laser Doppler flowmeter and an NO-selective electrode, respectively. The NO2-NO3 and malonaldehyde (MDA) concentrations were measured in the experimental urinary bladders. Clamping of the abdominal aorta, blood flow was rapidly decreased and NO release was gradually increased. After removing the clip, blood flow was rapidly increased and NO release was gradually returned to the basal level. These movements of blood flow and NO release were inhibited by treatment with sivelestat sodium hydrate in a dose-dependent manner. Both NO2-NO3 and MDA concentrations in the bladder were increased by induction of IR, and NO2-NO3 and MDA concentrations were decreased by treatment with high dose of sivelestat sodium hydrate significantly. Our data indicated that sivelestat sodium hydrate could inhibit increasing NO2-NO3 and MDA concentrations by IR, and it has potentiality protective effects on IR injury in the rat urinary bladder.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₀H₂₁N₂NAO₇S
Molecular Weight
456.44
Exact Mass
456.09671
CAS #
150374-95-1
Related CAS #
Sivelestat;127373-66-4;Sivelestat sodium tetrahydrate;201677-61-4
PubChem CID
23664980
Appearance
Typically exists as white to off-white solids at room temperature
LogP
2.46
tPSA
150.08
SMILES
[O-]C(CNC(C1=CC=CC=C1NS(C2=CC=C(OC(C(C)(C)C)=O)C=C2)(=O)=O)=O)=O.[Na+]
InChi Key
ZAIFANJZUGNYCK-UHFFFAOYSA-M
InChi Code
InChI=1S/C20H22N2O7S.Na/c1-20(2,3)19(26)29-13-8-10-14(11-9-13)30(27,28)22-16-7-5-4-6-15(16)18(25)21-12-17(23)24;/h4-11,22H,12H2,1-3H3,(H,21,25)(H,23,24);/q;+1/p-1
Chemical Name
sodium;2-[[2-[[4-(2,2-dimethylpropanoyloxy)phenyl]sulfonylamino]benzoyl]amino]acetate
Synonyms
Sivelestat sodium, ONO5046-Na, Sodium sivelestat, EI546 sodium, LY544349 sodium; ONO5046, LY544349, EI546; ONO 5046; ONO5046; ONO-5046; LY544349; LY-544349; LY 544349; EI 546 sodium salt hydrate, Elaspol sodium salt hydrate, LY 544349 sodium salt hydrate, Trade name: Elaspol.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:100 mg/mL (189.2 mM)
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.48 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.48 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.48 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1909 mL 10.9543 mL 21.9087 mL
5 mM 0.4382 mL 2.1909 mL 4.3817 mL
10 mM 0.2191 mL 1.0954 mL 2.1909 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Efficacy and Safety of Sivelestat Sodium and Dexamethasone in the Treatment of ARDS
CTID: NCT06387823
Phase: N/A
Status: Recruiting
Date: 2024-06-04
Clinical Effects of Sivelestat Sodium on Improving ARDS in Patients With COVID-19
CTID: NCT06218862
Status: Completed
Date: 2024-01-23
Protective Effect of Sivelestat Sodium on ARDS in Patients With Sepsis
CTID: NCT04973670
Phase: Phase 3
Status: Recruiting
Date: 2023-04-05
Sivelestat for Acute Respiratory Distress Syndrome Due to COVID-19
CTID: NCT05697016
Phase: N/A
Status: Not yet recruiting
Date: 2023-01-25
Neutrophil Elastase Inhibitor in Treatment of ARDS Patients With Mechanical Ventilation Caused by Sepsis
CTID: NCT05672472
Phase: N/A
Status: Not yet recruiting
Date: 2023-01-05
Contact Us