Size | Price | Stock | Qty |
---|---|---|---|
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
Purity: ≥98%
SKF38393 (also known as SKF-38393A) is a novel potent and selective dopamine D1 receptor agonist with IC50 of 110 nM, the (+)-enantiomer is the active isomer. Agonism of the D1DR by SKF 38393 is correlated to induced desynchronization of electroencephalographic activity in rats. SKF 38393 also demonstrated agonism of the serotonin SR-2C (5-HT1C receptor). SKF 38393 HCl is an activator of D5DR. In locally anesthetized, artificially respired, gallamine-treated rats, i.v. administration of SKF 38393 significantly altered dopamine cell activity. In these rats, firing rate increases and decreases were also observed.
Targets |
Dopamine D1/D5 receptor
|
||
---|---|---|---|
ln Vitro |
|
||
ln Vivo |
|
||
Enzyme Assay |
SKF 38393 hydrochloride is an agonist of D1 with IC50 of 110 nM.
Iodinated SCH 23390, 125I-SCH 23982 (DuPont-NEN), was examined using quantitative autoradiography for its potency, selectivity, and anatomical and neuronal localization of binding to the dopamine D1 receptor in rat brain sections. 125I-SCH 23982 bound to D1 sites in the basal ganglia with very high affinity (Kd values of 55-125 pM), specificity (70-85% of binding was displaced by 5 microM cis-flupenthixol), and in a saturable manner (Bmax values of 65-176 fmol/mg protein). Specific 125I-SCH 23982 binding was displaced by the selective D1 antagonists SCH 23390 (IC50 = 90 pM) and cis-flupenthixol (IC50 = 200 pM) and the D1 agonist SKF 38393 (IC50 = 110 nM) but not by D2-selective ligands (I-sulpiride, LY 171555) or the S2 antagonist cinanserin. Compared with 3H-SCH 23390, the 5- to 10-fold greater affinity for the D1 site and 50-fold greater specific radioactivity of 125I-SCH 23982 makes it an excellent radioligand for labeling the D1 receptor. The concentrations of D1 sites were greatest in the medial substantia nigra and exceeded by over 50% the concentration of D1 sites in the lateral substantia nigra, caudoputamen, nucleus accumbens, olfactory tubercle, and entopeduncular nucleus. Lower concentrations of D1 sites were present in the internal capsule, dorsomedial frontal cortex, claustrum, and layer 6 of the neocortex. D1 sites were absent in the ventral tegmental area. Intrastriatal injections of the axon-sparing neurotoxin, quinolinic acid, depleted by 87% and by 46-58% the concentrations of displaceable D1 sites in the ipsilateral caudoputamen and medial and central pars reticulata of the substantia nigra, respectively. No D1 sites were lost in the lateral substantia nigra. Destruction of up to 94% of the mesostriatal dopaminergic projection with 6-hydroxydopamine did not reduce D1 binding nor, with one exception, increase striatal or nigral D1 receptor concentrations. 125I-SCH 23982 selectively labels D1 binding sites on striatonigral neurons with picomolar affinity, and these neurons contain the majority of D1 sites in rat brain[J Neurosci. 1987 Jan;7(1):213-222.]. |
||
Animal Protocol |
|
||
References |
[1]. Proc Natl Acad Sci U S A.1995 Mar 28;92(7):2446-50;[2]. Eur J Pharmacol.2007 Dec 22;577(1-3):71-7.
|
||
Additional Infomation |
1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol is a benzazepine that is 2,3,4,5-tetrahydro-3-benzazepine bearing a phenyl substituent at position 1 and two hydroxy substituents at positions 7 and 8. It is a benzazepine, a member of catechols and a secondary amino compound.
A selective D1 dopamine receptor agonist used primarily as a research tool. |
Molecular Formula |
C16H17NO2
|
|
---|---|---|
Molecular Weight |
255.32
|
|
Exact Mass |
255.126
|
|
Elemental Analysis |
C, 75.27; H, 6.71; N, 5.49; O, 12.53
|
|
CAS # |
67287-49-4
|
|
Related CAS # |
67287-49-4;62717-42-4 (HCl);81702-42-3 (R-isomer HCl);62751-59-1 (R-isomer); 20012-10-6 (HBr);
|
|
PubChem CID |
1242
|
|
Appearance |
Typically exists as solid at room temperature
|
|
Density |
1.209g/cm3
|
|
Boiling Point |
467.1ºC at 760mmHg
|
|
Flash Point |
180.1ºC
|
|
LogP |
2.704
|
|
Hydrogen Bond Donor Count |
3
|
|
Hydrogen Bond Acceptor Count |
3
|
|
Rotatable Bond Count |
1
|
|
Heavy Atom Count |
19
|
|
Complexity |
291
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
C1=CC=C(C=C1)C2CNCCC3=CC(=C(C=C32)O)O
|
|
InChi Key |
JUDKOGFHZYMDMF-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C16H17NO2/c18-15-8-12-6-7-17-10-14(13(12)9-16(15)19)11-4-2-1-3-5-11/h1-5,8-9,14,17-19H,6-7,10H2
|
|
Chemical Name |
5-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.9167 mL | 19.5833 mL | 39.1665 mL | |
5 mM | 0.7833 mL | 3.9167 mL | 7.8333 mL | |
10 mM | 0.3917 mL | 1.9583 mL | 3.9167 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Proc Natl Acad Sci U S A. 1995 Mar 28; 92(7): 2446–2450. td> |
Proc Natl Acad Sci U S A. 1995 Mar 28; 92(7): 2446–2450. td> |
Proc Natl Acad Sci U S A. 1995 Mar 28; 92(7): 2446–2450. td> |