Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
SNDX-5613 (SNDX5613) is a novel, highly potent and selective inhibitor of Menin-MLL interaction with the potential to be used for MLL-rearranged (MLL-r) acute leukemias, including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). It inhibits the interaction of Menin-MLL with a Ki of 0.149 nM and a cell based IC50 of 10-20 nM.
ln Vitro |
|
|
---|---|---|
ln Vivo |
Revumenib (SNDX-5613) has an IC50 of 53 nM for plasma in vivo. Treatment with revumenib significantly improves survival and controls leukemia in aggressively disseminated MOLM-13 xenografts[1].
|
|
References | ||
Additional Infomation |
Revumenib is an orally bioavailable protein-protein interaction (PPI) inhibitor of the menin-mixed lineage leukemia (MLL; myeloid/lymphoid leukemia; KMT2A) proteins, with potential antineoplastic activity. Upon oral administration, revumenib targets and binds to the nuclear protein menin, thereby preventing the interaction between the two proteins menin and MLL and the formation of the menin-MLL complex. This reduces the expression of downstream target genes and results in an inhibition of the proliferation of MLL-rearranged leukemic cells. The menin-MLL complex plays a key role in the survival, growth, transformation and proliferation of certain kinds of leukemia cells.
|
Molecular Formula |
C32H47FN6O4S
|
---|---|
Molecular Weight |
630.8168
|
Exact Mass |
630.34
|
Elemental Analysis |
C, 60.93; H, 7.51; F, 3.01; N, 13.32; O, 10.14; S, 5.08
|
CAS # |
2169919-21-3
|
PubChem CID |
132212657
|
Appearance |
White to off-white solid powder
|
LogP |
4.3
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
10
|
Rotatable Bond Count |
11
|
Heavy Atom Count |
44
|
Complexity |
1040
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
FRVSRBKUQZKTOW-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C32H47FN6O4S/c1-5-39(23(3)4)31(40)27-17-25(33)9-12-28(27)43-29-18-34-22-35-30(29)38-20-32(21-38)13-15-37(16-14-32)19-24-7-10-26(11-8-24)36-44(41,42)6-2/h9,12,17-18,22-24,26,36H,5-8,10-11,13-16,19-21H2,1-4H3
|
Chemical Name |
N-ethyl-2-[4-[7-[[4-(ethylsulfonylamino)cyclohexyl]methyl]-2,7-diazaspiro[3.5]nonan-2-yl]pyrimidin-5-yl]oxy-5-fluoro-N-propan-2-ylbenzamide
|
Synonyms |
SNDX-5613; SNDX 5613; SNDX5613; Revumenib;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 25 mg/mL (~39.63 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 4.17 mg/mL (6.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 41.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 4.17 mg/mL (6.61 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 41.7 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 4.17 mg/mL (6.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 2.5 mg/mL (3.96 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 5: ≥ 2.5 mg/mL (3.96 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 6: ≥ 0.5 mg/mL (0.79 mM) (saturation unknown) in 1% DMSO 99% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5852 mL | 7.9262 mL | 15.8524 mL | |
5 mM | 0.3170 mL | 1.5852 mL | 3.1705 mL | |
10 mM | 0.1585 mL | 0.7926 mL | 1.5852 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.