yingweiwo

Sodium Danshensu

Alias:
Cat No.:V0822 Purity: ≥98%
Sodium Danshensu (Danshensu Sodium), the sodium saltof danshensu, is a novel, potent,naturally occuring phenolic acid of caffeic acid derivatives isolated from Salvia miltiorrhiza with various biological activity (e.
Sodium Danshensu
Sodium Danshensu Chemical Structure CAS No.: 67920-52-9
Product category: P450 (e.g. CYP)
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Sodium Danshensu:

  • Danshensu
  • (Rac)-Salvianic acid A ((Rac)-Danshensu; (Rac)-Danshensu)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Sodium Danshensu (Danshensu Sodium), the sodium salt of danshensu, is a novel, potent, naturally occuring phenolic acid of caffeic acid derivatives isolated from Salvia miltiorrhiza with various biological activity (e.g, antioxidant, anti-inflammatory). Sodium Danshensu is a mono sodium of danshensu which is a compound isolated from Salvia miltiorrhiza Bge. Danshensu is an efficient radical scavenger and antioxidant which exhibits higher scavenging activities against free hydroxyl radicals, superoxide anion radicals.

Biological Activity I Assay Protocols (From Reference)
Targets
Natural product; CYP2E1 (IC50 = 12.6 μM); NF-κB
ln Vitro

In vitro activity: Sodium Danshensu is a mono sodium of danshensu which is a compound isolated from Salvia miltiorrhiza Bge. Danshensu is an efficient radical scavenger and antioxidant which exhibits higher scavenging activities against free hydroxyl radicals (HO()), superoxide anion radicals (O(2)(-)), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals and 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals than vitamin C. Sodium danshensu shows a biphasic effects on vessel tension. In phenylephrine-precontracted thoracic arteries with or without endothelium, low concentration (0.1-0.3 g/L) of sodium danshensu produces a weak contraction, while high concentrations (1-3 g/L) produces a pronounced vasodilator after a transient vasocontraction. Pre-incubation with sodium danshensu could inhibit vessel contraction induced by phenylephrine and potassium chloride in a concentration-dependent way. Sodium danshensu also inhibits phenylephrine- and CaCl2-induced vasoconstriction in Ca(2+)-free medium.


Cell Assay: Sodium danshensu showed a biphasic effects on vessel tension. While low dosage of sodium danshensu produced small contraction possibly through transient enhancement of Ca2+ influx, high dosage produced significant vasodilation mainly through promoting the opening of non-selective K+ channels and small-conductance calcium-sensitive K+ channels in the vascular smooth muscle cells

ln Vivo
Thoracic aortae from normal rats were isolated and equilibrated in organ bath with Krebs-Henseleit buffer and ring tension was recorded. Effects of sodium danshensu on basal tonus of the vessel and its effects on vessel contraction and relaxation with or without endothelium were observed. In vivo: Danshensu did not change the expression of AGEs but partly blocked the increased expression of RAGE in the hippocampus of diabetic mice. Danshensu could ameliorate the cognitive decline in streptozotocin-induced diabetic mice by attenuating advanced glycation end product-mediated neuroinflammatio
Enzyme Assay
Danhong Injection (DHI) as a Chinese patent medicine is mainly used to treat ischemic encephalopathy and coronary heart disease in combination with other chemotherapy. However, the information on DHI's potential drug interactions is limited. The goal of this work was to examine the potential P450-mediated metabolism drug interaction arising from DHI and its active components. The results showed that DHI inhibited CYP2C19, CYP2D6, CYP3A4, CYP2E1 and CYP2C9 with IC50 values of 1.26, 1.42, 1.63, 1.10 and 1.67% (v/v), respectively. Danshensu and rosmarinic acid inhibited CYP2E1 and CYP2C9 with IC50 values of 36.63 and 75.76 μm, and 34.42 and 76.89 μm, respectively. Salvianolic acid A and B inhibited CYP2D6, CYP2E1 and CYP2C9 with IC50 values of 33.79, 21.64 and 31.94 μm, and 45.47, 13.52 and 24.15 μm, respectively. The study provides some useful information for safe and effective use of DHI in clinical practice[3].
Cell Assay
By substituting medium with an "ischemic buffer," which is made to mimic the extracellular environment of myocardial ischemia and contain concentrations of potassium, hydrogen, and lactate ions that are similar to those found in vivo, cardiomyocytes are subjected to ischemia. A humidified atmosphere with 5% CO2 and 95% nitrogen is used to incubate cells in the hypoxic/ischemic chamber for two hours at 37°C. Cardiomyocytes are randomly exposed to one of the following therapies at the start of reperfusion: vehicle, Danshensu (1 or 10 μM), Danshensu plus the PI3K inhibitor wortmannin (10 nM), or Danshensu plus the ERK inhibitor U0126 (10 μM). H9c2 cardiomyocytes are cultured normally in CO2 incubation for the control group's cardiomyocytes at the same time.
Animal Protocol
Paeonol (80 mg kg(-1)) and danshensu (160 mg kg(-1)) were administered orally to Sprague Dawley rats in individual or in combination for 21 days. At the end of this period, rats were administered isoproterenol (85 mg kg(-1)) subcutaneously to induce myocardial injury. After induction, rats were anaesthetized with pentobarbital sodium (35 mg kg(-1)) to record electrocardiogram, then sacrificed and biochemical assays of the heart tissues were performed. Principal findings: Induction of rats with isoproterenol resulted in a marked (P<0.001) elevation in ST-segment, infarct size, level of serum marker enzymes (CK-MB, LDH, AST and ALT), cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GR, and GST) and protein expression of Bcl-2. Pretreatment with paeonol and danshensu combination showed a significant (P<0.001) decrease in ST-segment elevation, infarct size, cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant increase in the activities of endogenous antioxidants and protein expression of Bcl-2 and Nrf2 when compared with individual treated groups.[4]
References
[1]. Food Chem Toxicol.2008 Jan;46(1):73-81;
[2]. Toxicol Mech Methods.2010 Oct;20(8):510-4.
[3]. Biomed Chromatogr. 2018 Aug;32(8):e4250.
[4]. PLoS One. 2012;7(11):e48872.
Additional Infomation
Sodium danshensu is a monocarboxylic acid and a member of benzenes.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H9O5.NA
Molecular Weight
220.15
Exact Mass
220.034
Elemental Analysis
C, 49.10; H, 4.12; Na, 10.44; O, 36.34
CAS #
67920-52-9
Related CAS #
Danshensu;76822-21-4;(Rac)-Salvianic acid A;23028-17-3
PubChem CID
23711819
Appearance
White to off-white solid powder
LogP
-0.3
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
3
Heavy Atom Count
15
Complexity
211
Defined Atom Stereocenter Count
0
InChi Key
ZMMKVDBZTXUHFO-UHFFFAOYSA-M
InChi Code
InChI=1S/C9H10O5.Na/c10-6-2-1-5(3-7(6)11)4-8(12)9(13)14;/h1-3,8,10-12H,4H2,(H,13,14);/q;+1/p-1
Chemical Name
sodium;3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate
Synonyms

Danshensu sodium;Sodium Danshensu; Sodium Danshensu; 67920-52-9; sodium 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate; Danshensu (sodium salt); Danshensu sodium salt; sodium;3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate; Benzenepropanoic acid, a,3,4-trihydroxy-, monosodium salt; sodium 3-(3,4-dihydroxyphenyl)-dl-lactate;(±)-DanShenSu sodium salt

HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 7 mg/mL (31.8 mM)
Water: 2 mg/mL (9.1 mM)
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.36 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.36 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 50 mg/mL (227.12 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.5424 mL 22.7118 mL 45.4236 mL
5 mM 0.9085 mL 4.5424 mL 9.0847 mL
10 mM 0.4542 mL 2.2712 mL 4.5424 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Sodium Danshensu


    Effects of sodium danshensu on KCl-induced contractile response in endothelium-denuded rat aortic rings.Acta Pharmacol Sin.2010 Apr;31(4):421-8.
  • Sodium Danshensu


    Effect of sodium danshensu on basal tonus in normal Krebs-Henseleit buffer (A) and in Ca2+-free Krebs-Henseleit buffer containing 1 mmol/L ethyleneglycoltetraacetic acid (EGTA) (B).Acta Pharmacol Sin.2010 Apr;31(4):421-8.
  • Sodium Danshensu


    Effects of sodium danshensu on phenylephrine-induced contractile response in endothelium-denuded rat aortic rings.Acta Pharmacol Sin.2010 Apr;31(4):421-8.
Contact Us