Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vivo |
In TGM123 mice, but not in TLM mice, spirapril (injectable; 10 mg/kg; 3 weeks) decreases alcohol consumption [2]. In treated mice, meningeal ACE activity was reduced by 40.2% by piropril [2]. Spiropril has the ability to penetrate the blood-brain barrier and prevent transgenic effects in tests [2]. In spontaneously hypertensive rats, spiropril can inhibit left ventricular hypertrophy, lessen myocardial damage, and stimulate angiogenesis [3].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Bioavailability is 50% following oral administration. Metabolism / Metabolites Hepatic. Converted to spiraprilat following oral administration. Biological Half-Life 30 to 35 hours |
References | |
Additional Infomation |
Spirapril is a dipeptide, a dithioketal, an azaspiro compound, a dicarboxylic acid monoester, an ethyl ester, a tertiary carboxamide, a secondary amino compound and a pyrrolidinecarboxylic acid. It has a role as a prodrug, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor and an antihypertensive agent. It is functionally related to a spiraprilat.
Spirapril is an ACE inhibitor antihypertensive drug used to treat hypertension. Spirapril is converted to the active spiraprilat after administration. ACE inhibitors are used primarily in treatment of hypertension and congestive heart failure. Spirapril is a prodrug and non-sulfhydryl angiotensin converting enzyme (ACE) inhibitor with antihypertensive activity. Spirapril is converted in the body to its active metabolite spiraprilat. Spiraprilat competitively binds to and inhibits ACE, thereby blocking the conversion of angiotensin I to angiotensin II. This prevents the potent vasoconstrictive actions of angiotensin II and results in vasodilation. Spiraprilat also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex, which leads to an increase in sodium excretion and subsequently increases water outflow. Drug Indication Spirapril is an ACE inhibitor class drug used to treat hypertension. Mechanism of Action Spiraprilat, the active metabolite of spirapril, competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. Spiraprilat may also act on kininase II, an enzyme identical to ACE that degrades the vasodilator bradykinin. Pharmacodynamics Spirapril is an angiotensin-converting enzyme (ACE) inhibitor. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. By blocking ACE, spirapril decreases angiotensin II which is a vasoconstrictor and inducer of aldosterone. So by inhibiting the enzymes, aldosterone secreation is decreased (so less sodium is reabsorbed) and there is a decrease in vasoconstriction. Combined, this leades to a decrease in blood pressure. |
Molecular Formula |
C22H30N2O5S2
|
---|---|
Molecular Weight |
466.61
|
Exact Mass |
466.16
|
CAS # |
83647-97-6
|
Related CAS # |
Spirapril hydrochloride;94841-17-5
|
PubChem CID |
5311447
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.32 g/cm3
|
Boiling Point |
697.8ºC at 760 mmHg
|
Flash Point |
375.8ºC
|
Index of Refraction |
1.621
|
LogP |
2.719
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
10
|
Heavy Atom Count |
31
|
Complexity |
650
|
Defined Atom Stereocenter Count |
3
|
SMILES |
O=C([C@H](C1)N(C([C@@H](N[C@@H](CCC2=CC=CC=C2)C(OCC)=O)C)=O)CC31SCCS3)O
|
InChi Key |
HRWCVUIFMSZDJS-SZMVWBNQSA-N
|
InChi Code |
InChI=1S/C22H30N2O5S2/c1-3-29-21(28)17(10-9-16-7-5-4-6-8-16)23-15(2)19(25)24-14-22(30-11-12-31-22)13-18(24)20(26)27/h4-8,15,17-18,23H,3,9-14H2,1-2H3,(H,26,27)/t15-,17-,18-/m0/s1
|
Chemical Name |
(8S)-7-[(2S)-2-[[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino]propanoyl]-1,4-dithia-7-azaspiro[4.4]nonane-8-carboxylic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1431 mL | 10.7156 mL | 21.4312 mL | |
5 mM | 0.4286 mL | 2.1431 mL | 4.2862 mL | |
10 mM | 0.2143 mL | 1.0716 mL | 2.1431 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.