yingweiwo

Stylopine

Alias: Tetrahydrocoptisine; 4312-32-7; Stylopine; (-)-STYLOPINE; dl-Stylopine;
Cat No.:V15370 Purity: ≥98%
Stylopine [(±)-Stylopine; Tetrahydrocoptisine;(R,S±)-Stylopine;NSC-110382; NSC-404529] is a naturally occurringisoquinolinealkaloid isolated from C. impatiens with anti-inflammatory and antioxidant activities.
Stylopine
Stylopine Chemical Structure CAS No.: 7461-02-1
Product category: Parasite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Stylopine:

  • Stylopin
  • (-)-Stylopine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Stylopine [(±)-Stylopine; Tetrahydrocoptisine; (R,S±)-Stylopine; NSC-110382; NSC-404529] is a naturally occurring isoquinoline alkaloid isolated from C. impatiens with anti-inflammatory and antioxidant activities. Stylopine is a potent AKR1C3 (Aldo-keto reductase 103) inhibitor that significantly inhibits AKR1C3 in intact cells without a considerable cytotoxic effect. It also inhibits LPS-induced NF-κB activation and production of nitric oxide (NO), TNF-α, and IL-6 in isolated mouse peritoneal macrophages when used at concentrations ranging from 0.001 to 1 µg/ml. Tetrahydrocoptisine (10 and 30 mg/kg) inhibits xylene-induced ear edema in mice, and it decreases serum levels of TNF-α in a mouse model of LPS-induced septic shock. It reduces the severity of ethanol-induced gastric ulcers in mice when administered at doses of 10 or 20 mg/kg.

Biological Activity I Assay Protocols (From Reference)
Targets
Natural alkaloid; anti-inflammatory; anti-parasitic
ln Vitro
Tetrahydrocoptisine (THC) significantly inhibited LPS-induced TNF-α, interleukin-6(IL-6) and nitric oxide (NO) production. THC inhibited the production of TNF-α and IL-6 by down-regulating LPS-induced IL-6 and TNF-α mRNA expression. Furthermore, it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) as well as the expression of nuclear factor kappa B(NF-κB), in a concentration-dependent manner. Taken together, our data suggest that THC is an active anti-inflammatory constituent by inhibition of TNF-α, IL-6 and NO production possibly via down-regulation of NF-κB activation, phospho-ERK1/2 and phospho-p38MAPK signal pathways[1].
ln Vivo
The extracts or constituents from Corydalis impatiens are known to have many pharmacological activities. Tetrahydrocoptisine (THC), a protoberberine compound from Corydalis impatiens, was found to possess a potent anti-inflammatory effect in different acute or chronic inflammation model animals. Pretreatment with THC (i.p.) inhibited the paw and ear edema in the carrageenan-induced paw edema assay and xylene-induced ear edema assay, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, THC significantly inhibited serum tumor necrosis factor-alpha (TNF-α) release in mice [1].
Enzyme Assay
Assay of myeloperoxidase in gastric tissue[2] Myeloperoxidase, an enzyme found primarily in neutrophil azurophilic granules, has been used extensively as a biochemical marker for granulocyte infiltration into various tissues, including the gastrointestinal tract (Costa et al., 2013, Krawisz et al., 1984). MPO activity was determined using an MPO activity measurement kit by adding 0.2 ml of o-dianisidine hydrochloride and 0.0005% hydrogen peroxide to 4 ml buffer containing 0.2 ml homogenates. MPO activity was assayed at room temperature by measuring the increase in absorbance at 460 nm due to the fluorescent product oxidized by the H2O2-generated redox intermediate. MPO activities were expressed as units per gram of tissue.
Animal Protocol
Ethanol-induced gastric mucosal damage[2] Mice were randomly divided into five experimental groups, each containing ten animals. The normal and ulcer control groups received vehicle (0.9% saline) throughout the course of the experiments. The prevention groups received (ip) different doses of THC (10 and 20 mg/kg, dissolved in 0.9% saline) and cimetidine (100 mg/kg, reference drug, dissolved in 0.9% saline) respectively for a period of 3 days. After fasting for 24 h prior to the experiment, mice were fed orally with 75% ethanol (0.5 ml/100 g body weight) to induce the acute ulcer, while the normal group received water only (Mei et al., 2012). Four hours after induction, blood samples were collected from the retro-orbital plexus of each animal and were then centrifuged for 10 min at 2500 g to obtain clear sera which were stored at − 80 °C before use (Choi et al., 2010). After the mice were euthanized, the stomachs were rapidly removed, opened along the greater curvature and rinsed with ice-cold saline to remove the gastric contents and blood clots in order to assess the extent of gastric damage. Thereafter, each stomach was dichotomised, with one moiety of stomach immersed in 10% formaldehyde for histological evaluation and gastric tissue from the other moiety stored at − 80 °C for biochemical determinations.[2]
Determination of gastric ulcer index[2] The degree of gastric mucosal damage was evaluated from digital pictures, and rated for gross pathology according to the ulcer score scales as previously described (Salga et al., 2012). The lesions were scored as follows: 0: no lesions; 0.5: slight hyperemia or ≤ 5 petechiae; 1: ≤ 5 erosions ≤ 5 mm in length; 1.5: ≤ 5 erosions ≤ 5 mm in length and many petechiae; 2: 6–10 erosions ≤ 5 mm in length; 2.5: 1–5 erosions > 5 mm in length; 3: 5–10 erosions > 5 mm in length; 3.5: > 10 erosions > 5 mm in length; 4: 1–3 erosions ≤ 5 mm in length and 0.5–1 mm in width; 4.5: 4–5 erosions ≤ 5 mm in length and 0.5–1 mm in width; 5: 1–3 erosions > 5 mm in length and 0.5–1 mm in width; 6: 4 or 5 grade 5 lesions; and 7: ≥ 6 grade 5 lesions; 8: complete lesion of the mucosa with hemorrhage.. The sum of the total scores was divided by the number of animals to obtain the mean ulcer index for each group.
References

[1].Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-\u03b1, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-\u03baB activation and and MAPK pathway. Eur J Pharmacol . 2013 Sep 5;715(1-3):62-71

[2].Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):21-9.

[3].Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. J Steroid Biochem Mol Biol . 2014 Sep;143:250-8.

Additional Infomation
Stylopine has been reported in Fibraurea recisa, Corydalis ternata, and other organisms with data available.
See also: Stylopine (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H17NO4
Molecular Weight
323.34258
Exact Mass
323.115
Elemental Analysis
C, 70.58; H, 5.30; N, 4.33; O, 19.79
CAS #
7461-02-1
Related CAS #
4312-32-7 or 7461-02-1 (racemate) ; 84-39-9 (S-isomer)
PubChem CID
6770
Appearance
Typically exists as solid at room temperature
Density
1.5±0.1 g/cm3
Boiling Point
466.6±34.0 °C at 760 mmHg
Melting Point
221-222ºC
Flash Point
142.5±22.9 °C
Vapour Pressure
0.0±1.2 mmHg at 25°C
Index of Refraction
1.722
LogP
3.95
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
0
Heavy Atom Count
24
Complexity
502
Defined Atom Stereocenter Count
0
SMILES
C1OC2=CC3C4CC5=C(CN4CCC=3C=C2O1)C1OCOC=1C=C5
InChi Key
UXYJCYXWJGAKQY-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H17NO4/c1-2-16-19(24-10-21-16)14-8-20-4-3-12-6-17-18(23-9-22-17)7-13(12)15(20)5-11(1)14/h1-2,6-7,15H,3-5,8-10H2
Chemical Name
5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.02,10.04,8.015,23.016,20]tetracosa-2,4(8),9,15(23),16(20),21-hexaene
Synonyms
Tetrahydrocoptisine; 4312-32-7; Stylopine; (-)-STYLOPINE; dl-Stylopine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0927 mL 15.4636 mL 30.9272 mL
5 mM 0.6185 mL 3.0927 mL 6.1854 mL
10 mM 0.3093 mL 1.5464 mL 3.0927 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us