Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
Purity: ≥98%
Succinylcholine Succinylcholine Chloride Dihydrate (also called Suxamethonium Chloride Dihydrate), the dihydrate form of Succinylcholine Succinylcholine Chloride, is a quaternary skeletal muscle relaxant usually with anesthetic effects and is used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for.
ln Vitro |
Succinylcholine concentration-dependently activated the muscle-type nAChR with an EC50 value of 10.8 microm (95% confidence interval, 9.8-11.9 microm), and after the initial activation, succinylcholine desensitized the muscle-type nAChR. Succinylcholine did not activate the neuronal nAChR subtypes alpha3beta2, alpha3beta4, alpha4beta2, or alpha7 at concentrations up to 1 mm and was a poor inhibitor at these receptor subtypes, with IC50 values above 100 microm.[1]
|
---|---|
Cell Assay |
Oocytes were continuously perfused with ND-96 at a rate of 2 ml/min in a 150-μl chamber. Drugs were delivered from a 96-well plate using disposable tips and administrated at a rate of 2 ml/min for the first 2 s, and thereafter at 1 ml/min. In activation experiments, acetylcholine and succinylcholine were applied for 20 s. To determine whether succinylcholine inhibited acetylcholine-induced currents, succinylcholine was coapplied and preapplied with acetylcholine for 55 s before a 20-s application of both acetylcholine and succinylcholine. Between each drug application, there was a 6-min washout period to allow clearance of the drugs and to avoid desensitization of the channels. Before and after each concentration-response experiment, three control responses were recorded using an EC50acetylcholine concentration for each receptor subtype to exclude desensitization (precontrol and postcontrol). Experiments were rejected if the postcontrol response was less than 80% of the precontrol response. To adjust for the level of channel expression, the responses in agonist concentration-response experiments were normalized to peak response in each oocyte. For inhibition experiments, responses in each oocyte were normalized to the mean of the second and third acetylcholine precontrols.[1]
|
References |
Anesthesiology.2006 Apr;104(4):724-33.
|
Additional Infomation |
Succinylcholine chloride dihydrate is a hydrate that is the dihydrate form of succinylcholine chloride. It has a role as a muscle relaxant. It contains a succinylcholine chloride (anhydrous).
A quaternary skeletal muscle relaxant usually used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for. See also: Succinylcholine (has active moiety); Succinylcholine Chloride (annotation moved to). |
Molecular Formula |
C14H34CL2N2O6
|
|
---|---|---|
Molecular Weight |
397.3356
|
|
Exact Mass |
396.179
|
|
CAS # |
6101-15-1
|
|
Related CAS # |
306-40-1 (cation);6101-15-1(Chloride Dihydrate);71-27-2 (Chloride);
|
|
PubChem CID |
656867
|
|
Appearance |
Typically exists as solid at room temperature
|
|
Density |
1.31 g/cm3
|
|
Melting Point |
159-164ºC
|
|
LogP |
0
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
8
|
|
Rotatable Bond Count |
11
|
|
Heavy Atom Count |
24
|
|
Complexity |
284
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
0
|
|
InChi Key |
FFSBEIRFVXGRPR-UHFFFAOYSA-L
|
|
InChi Code |
InChI=1S/C14H30N2O4.2ClH.2H2O/c1-15(2,3)9-11-19-13(17)7-8-14(18)20-12-10-16(4,5)6;;;;/h7-12H2,1-6H3;2*1H;2*1H2/q+2;;;;/p-2
|
|
Chemical Name |
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5167 mL | 12.5837 mL | 25.1674 mL | |
5 mM | 0.5033 mL | 2.5167 mL | 5.0335 mL | |
10 mM | 0.2517 mL | 1.2584 mL | 2.5167 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.