Sulforaphane (BroccoPhane; Detoxophane)

Alias: Sulforafan Sulforaphane BroccoPhane Detoxophane Broccoli sprout extracts 4-methyl-sulfinybutyl isothiocyanatel
Cat No.:V10659 Purity: ≥98%
Sulforaphane (BroccoPhane; Detoxophane) is a naturally-occurring isothiocyanatewidely found in consumed vegetables.
Sulforaphane (BroccoPhane; Detoxophane) Chemical Structure CAS No.: 4478-93-7
Product category: Nrf2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Sulforaphane (BroccoPhane; Detoxophane):

  • L-Sulforaphane
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Sulforaphane (BroccoPhane; Detoxophane) is a naturally-occurring isothiocyanate widely found in consumed vegetables. As the aglycone metabolite of glucosinolate glucoraphanin (sulforaphane glucosinolate), sulforaphane acts as an antioxidant and potent stimulator of endogenous detoxifying enzymes. Sulforaphane activates Nrf2 and inhibits high glucose-induced progression of pancreatic cancer via AMPK dependent signaling. Sulforaphane has shown anti-cancer and anti-inflammatory activities.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In a dose-dependent manner, sulforaphane causes cell cycle arrest and eventual cell death. Higher expression of cyclin A and B1 was linked to this sulforaphane-induced cell cycle halt. Sulforaphane causes apoptosis, which is the process by which cells die. Sulforaphane is less harmful to differentiated CaCo2 cells and slows the return of growth in quiescent colon cancer cells (HT29), while also reducing their cell viability [1]. Sulforaphane pretreatment of H9c2 rat myoblasts decreased the amount of apoptotic cells and pro-apoptotic protein expression (Bax, caspase-3, and cytochrome c), as well as the increase in mitochondrial membrane potential that doxorubicin caused. Furthermore, sulforaphane decreases doxorubicin-induced levels of reactive oxygen species (ROS, as determined by MitoSOX Red reagent) in mitochondria via increasing the mRNA and protein expression of heme oxygenase-1 [2].
ln Vivo
Sulforaphane reduces mammary tumor growth in Sprague-Dawley rats treated with a single dose of 9,10-dimethyl-1,2-benzanthracene. Administration of sulforaphane lowers the incidence, multiplicity, and weight of breast tumors generated by a single dose of DMBA in female Sprague-Dawley rats and slows their progression [3].
References
[1]. Gamet-Payrastre L, et al. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000 Mar 1;60(5):1426-33.
[2]. Li B, et al. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med. 2015 Jul;36(1):53-64.
[3]. Zhang Y, et al. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornylisothiocyanates. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3147-50.
[4]. Chen X, et al. Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of PancreaticCancer via AMPK Dependent Signaling. ell Physiol Biochem. 2018;50(3):1201-1215
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C6H11NOS2
Molecular Weight
177.3
CAS #
4478-93-7
Related CAS #
142825-10-3 (R-isomer);155320-20-0 (S-isomer);4478-93-7 (racemic);
SMILES
O=S(CCCCN=C=S)C
InChi Key
SUVMJBTUFCVSAD-UHFFFAOYSA-N
InChi Code
InChI=1S/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3
Chemical Name
1-isothiocyanato-4-(methylsulfinyl)butane
Synonyms
Sulforafan Sulforaphane BroccoPhane Detoxophane Broccoli sprout extracts 4-methyl-sulfinybutyl isothiocyanatel
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 62.5 mg/mL (~352.53 mM)
H2O : ~50 mg/mL (~282.02 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (14.10 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (14.10 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (14.10 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10 mg/mL (56.40 mM) in 30 % SBE-β-CD (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.6402 mL 28.2008 mL 56.4016 mL
5 mM 1.1280 mL 5.6402 mL 11.2803 mL
10 mM 0.5640 mL 2.8201 mL 5.6402 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top