yingweiwo

Suramin

Cat No.:V32803 Purity: ≥98%
Suramin, a polysulfonated naphthylurea analog, is a novel and potentDNA topoisomerase IIinhibitor with anIC50of 5 μM.
Suramin
Suramin Chemical Structure CAS No.: 145-63-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
50mg
100mg
250mg
500mg

Other Forms of Suramin:

  • SURAMIN SODIUM
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Suramin, a polysulfonated naphthylurea analog, is a novel and potent DNA topoisomerase II inhibitor with an IC50 of 5 μM. It has demonstrated various biological activities, for example, Suramin sodium is used as an antiparasitic drug. The mechanism of action for suramin is unclear, however, it is thought that parasites are able to selectively uptake suramin via receptor-mediated endocytosis of drug that is bound to low-density lipoproteins and to a lesser extent, other serum proteins. Once inside parasites, suramin combines with proteins, especially trypanosomal glycolytic enzymes to inhibit energy metabolism.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Suramin (50-600 μg/mL; for 24-96 hours) suppresses cell growth and lowers cancer cell viability in a dose- and time-dependent manner [7]. Suramin (300 μg/mL; for 48 hours) causes apoptosis and downregulates mRNA expression in HeLa cells [7]. Suramin (1 mg/mL; 1 hour) effectively suppresses phosphorylated ERK1/2 [8]. The IC50 values of HO-8910 PM and HeLa are 319 μg/mL and 476 μg/mL respectively [7]. Suramin suppresses viral replication in Vero E6 cells [5].
ln Vivo
Suramin (10 mg/kg; intravenously administered twice weekly for three weeks) normalizes pulmonary artery pressure values and vascular structure by reversing established pulmonary hypertension (PH) [8].
Cell Assay
Cell proliferation assay[6]
Cell Types: HO-8910 PM ovarian cancer cells and HeLa cervical cancer cells
Tested Concentrations: 50, 100, 200, 300, 400, 500 and 600 μg/mL
Incubation Duration: 24, 48, 72 and 96 hrs (hours)
Experimental Results: Cell proliferation was inhibited in a dose- and time-dependent manner.

Apoptosis analysis [6]
Cell Types: HeLa Cell
Tested Concentrations: 300 μg/mL
Incubation Duration: 48 hrs (hours)
Experimental Results: Induction of apoptosis.

Western Blot Analysis[7]
Cell Types: PA-SMCs Cell
Tested Concentrations: 1 mg/mL
Incubation Duration: 1 hour
Experimental Results: Dramatically inhibited phosphorylated ERK1/2.
Animal Protocol
Animal/Disease Models: Adult male Wistar rat (200-225 g) [7]
Doses: 10 mg/kg
Route of Administration: intravenous (iv) (iv)injection; twice a week for 3 weeks
Experimental Results: Reversal of established PH, thereby increasing pulmonary artery pressure values and normalization of vascular structures.
References
[1]. Zhang YL, et al. Suramin is an active site-directed, reversible, and tight-binding inhibitor of protein-tyrosine phosphatases. J Biol Chem. 1998 May 15;273(20):12281-7.
[2]. Trapp J, et al. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem. 2007 Oct;2(10):1419-31.
[3]. Schuetz A, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure. 2007 Mar;15(3):377-89.
[4]. De Clercq E, et al. Suramin: a potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett. 1979 Nov;8(1):9-22.
[5]. Wanchao Yin, et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat Struct Mol Biol. 2021 Mar;28(3):319-325.
[6]. Jindal HK, et al. Suramin affects DNA synthesis in HeLa cells by inhibition of DNA polymerases. Cancer Res. 1990 Dec 15;50(24):7754-7.
[7]. Novaes RD, et al. Purinergic Antagonist Suramin Aggravates Myocarditis and Increases Mortality by EnhancingParasitism, Inflammation, and Reactive Tissue Damage in Trypanosoma cruzi-Infected Mice. Oxid Med Cell Longev. 2018 Sep 30;2018:7385639.
[8]. Izikki M, et al. The beneficial effect of suramin on monocrotaline-induced pulmonary hypertension in rats. PLoS One. 2013 Oct 15;8(10):e77073.
[9]. Xiaozhe Zhang, et al. Suramin and NF449 Are IP5K Inhibitors That Disrupt IP6-mediated Regulation of Cullin RING Ligase and Sensitize Cancer Cells to MLN4924/pevonedistat. J Biol Chem. 2020 Jun 3;jbc.RA120.014375.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C51H40N6O23S6
Molecular Weight
1297.2797
CAS #
145-63-1
Related CAS #
Suramin sodium salt;129-46-4
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
O=C(NC1=CC(C(NC2=CC(C(NC3=CC=C(S(=O)(O)=O)C4=CC(S(=O)(O)=O)=CC(S(=O)(O)=O)=C34)=O)=CC=C2C)=O)=CC=C1)NC5=CC(C(NC6=CC(C(NC7=CC=C(S(=O)(O)=O)C8=CC(S(=O)(O)=O)=CC(S(=O)(O)=O)=C78)=O)=CC=C6C)=O)=CC=C5
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.7708 mL 3.8542 mL 7.7084 mL
5 mM 0.1542 mL 0.7708 mL 1.5417 mL
10 mM 0.0771 mL 0.3854 mL 0.7708 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us