yingweiwo

Tafamidis

Alias: Fx-1006, PF06291826; Fx1006, PF-06291826; Fx 1006, Fx-1006A; PF 06291826; Tafamidis; Vyndaqel; TAFAMIDIS; 594839-88-0; Vyndamax; FX-1006; 2-(3,5-Dichlorophenyl)-1,3-Benzoxazole-6-Carboxylic Acid; 2-(3,5-Dichlorophenyl)-6-benzoxazole carboxylic acid; tafamidisum; 8FG9H9D31J;
Cat No.:V4862 Purity: ≥98%
Tafamidis (also known as Fx-1006 or PF-06291826; Vyndaqel and Vyndamax), a potent and selective transthyretin (TTR)stabilizer, is a medication approved for use in delaying disease progression in adults with certain forms of transthyretin amyloidosis.
Tafamidis
Tafamidis Chemical Structure CAS No.: 594839-88-0
Product category: Transthyretin (TTR)
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Tafamidis:

  • Tafamidis meglumine (Fx1006, PF06291826)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tafamidis (also known as Fx-1006 or PF-06291826; Vyndaqel and Vyndamax), a potent and selective transthyretin (TTR) stabilizer, is a medication approved in several countries for use in delaying disease progression in adults with certain forms of transthyretin amyloidosis.

Biological Activity I Assay Protocols (From Reference)
Targets
TTR (transthyretin) (EC50 = 2.7-3.2 μM)
ln Vitro
TTR is kinetically stabilized when tacamimeis binds to the two tetramer's typically conserved polarin binding sites with negative coupling (Kd = ∼2 nM and ∼200 nM) [1]. After 72 hours at =4.4-4.5, tacramids (0-7.2 μM) dose-dependently suppresses WT-TTR amyloidosis [1].
ln Vivo
ATTR amyloidosis is a systemic, debilitating and fatal disease caused by transthyretin (TTR) amyloid accumulation. RNA interference (RNAi) is a clinically validated technology that may be a promising approach to the treatment of ATTR amyloidosis. The vast majority of TTR, the soluble precursor of TTR amyloid, is expressed and synthesized in the liver. RNAi technology enables robust hepatic gene silencing, the goal of which would be to reduce systemic levels of TTR and mitigate many of the clinical manifestations of ATTR that arise from hepatic TTR expression. To test this hypothesis, TTR-targeting siRNAs were evaluated in a murine model of hereditary ATTR amyloidosis. RNAi-mediated silencing of hepatic TTR expression inhibited TTR deposition and facilitated regression of existing TTR deposits in pathologically relevant tissues. Further, the extent of deposit regression correlated with the level of RNAi-mediated knockdown. In comparison to the TTR stabilizer, tafamidis, RNAi-mediated TTR knockdown led to greater regression of TTR deposits across a broader range of affected tissues. Together, the data presented herein support the therapeutic hypothesis behind TTR lowering and highlight the potential of RNAi in the treatment of patients afflicted with ATTR amyloidosis[2].
In a phase II/III clinical trial of tafamidis in V30M TTR-FAP patients, this kinetic stabilizer demonstrated clinical efficacy over 18 mo of treatment. Relative to placebo controls, patients receiving tafamidis had 52% less neurologic deterioration, 53% and 80% preservation of large- and small-nerve fiber function, and improved nutritional status, outcomes that are associated with an improved quality of life. The tafamidis preclinical data presented within, when considered in concert with the clinical efficacy data, provide unique pharmacologic evidence supporting the amyloid hypothesis, the notion that lowering the efficiency of the amyloid cascade halts the degeneration of the peripheral and autonomic nervous system[1].
Enzyme Assay
Tafamidis Binds with High Affinity to TTR at Its T4-Binding Sites. Tafamidis Stabilizes the Weaker TTR Dimer–Dimer Interface.  Tafamidis Binds Selectively to TTR in Human Plasma. Tafamidis Stabilizes WT, V30M, and V122I TTR in Human Plasma. Tafamidis Stabilizes a Broad Range of Pathogenic TTR Variants. 
Immunoturbidity Assay for Stabilization of TTR Tetramer in Human Plasma.[1]
Urea denaturation of TTR in human plasma and chemical crosslinking was performed as described (see text and Fig. 6.) with minor modifications, except that TTR was quantified by immunoturbidity. Human plasma samples were thawed on ice and insoluble material was removed by centrifugation. For each, 4 µL was removed, and the initial TTR concentrations were determined by immunoturbidity. For each stabilization determination, 80 µL aliquots of each plasma sample were retained and 1.6 µL of either 5% dimethyl sulfoxide (DMSO) or 360 µM tafamidis in 5% DMSO was added. After incubation at room temperature for 15 minutes, 120 µL of urea buffer (8 M urea, 40 mM sodium phosphate, 80 mM KCl, pH 7.4) was added and samples were mixed and incubated at room temperature for the indicated time (typically 48 h). All samples were cross-linked with 3.2 µL of 25% glutaraldehyde. After 4 minutes, the reaction was quenched with 5.6 µL of 1.85 M NaBH4 (freshly prepared in 0.1 N NaOH) and incubated for 5 minutes. Postdenaturation TTR concentrations (4 µL) were determined by immunoturbidity. Olympus OSR6175 reagent and Prealbumin Calibrator ODR3029 were used according to the manufacturers’ instructions. To assess the correlation between the two detection methods, we analyzed plasma samples after urea treatment and glutaraldehyde crosslinking in parallel by Western blot and immunoturbidity. In the control samples, the amount of TTR detected by immunoturbidity decreased from an initial value of 22 mg/dL to 3 mg/dL after 3 d in urea. In the presence of tafamidis, 13 mg/dL of TTR remained; a level that was in good agreement with results from the Western blot assay (Fig. S3A).
Animal Protocol
Evaluation of tafamidis in hTTR V30M HSF1± mice[2]
Tafamidis/meglumine (tafamidis) and its respective meglumine only control (meglumine) were prepared as previously described. Four hundred microliters of 2 mg/ml tafamidis (0.8 mg total) or its respective meglumine control were administered via subcutaneous injection to 15-month-old hTTR V30M HSF1± mice on days 0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 35 and 38. TTR tissue deposition was evaluated on day 52 as described earlier. To confirm tafamidis-mediated stabilization of serum TTR, serum TTR tetramer stability was analyzed on days -7, 9, 23 and 37 using a modified version of a previously described TTR tetramer stability assay. See Supplementary Figure 2 for more detail on assay conditions and tetramer detection and quantitation. To quantify the extent of stabilization, % TTR tetramer stabilization was calculated using the following equation as previously described.
To compare the efficacy of the tetramer stabilization approach to that of RNAi-mediated TTR knockdown, we evaluated tafamidis in the hTTR V30M HSF1± model and quantified the impact of TTR tetramer stabilization on the regression of preexisting TTR deposits. To compensate for differences in dose frequency and route of administration, mice were administered excess tafamidis (>100× on mg/kg basis) to enable sufficient TTR tetramer stabilization. Although administration of tafamidis resulted in a significant and clinically relevant degree of serum TTR tetramer stabilization, only moderate TTR deposit regression was observed in the sciatic nerve and dorsal root ganglion; consistent regression was not observed in other tissues examined. It should be noted that the study duration was chosen to allow a more direct comparison with siTTR1 (Figure 3) and, as such, it is possible that longer term administration of tafamidis may have resulted in greater deposit regression in the hTTR V30M HSF1± model. However, in these conditions, TTR lowering seems to be more effective.
References
[1]. Bulawa, C.E., et al., Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A, 2012. 109(24): p. 9629-34.
[2]. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid. 2016 Jun;23(2):109-18.
Additional Infomation
Tafamidis is a member of the class of 1,3-benzoxazoles that is 1,3-benzoxazole-6-carboxylic acid in which the hydrogen at position 2 is replaced by a 3,5-dichlorophenyl group. Used (as its meglumine salt) for the amelioration of transthyretin-related hereditary amyloidosis. It has a role as a central nervous system drug. It is a member of 1,3-benzoxazoles, a monocarboxylic acid and a dichlorobenzene. It is a conjugate acid of a tafamidis(1-).
Tafamidis and tafamidis meglumine (FX-1006A) are benzoxazole derivatives developed by FoldRX. Tafamidis is structurally similar to diflusinal. Tafamidis was granted an EMA market authorisation on 16 November 2011 and FDA approval on 3 May 2019.
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive, life-threatening disease characterized by the aggregation and deposition of amyloidogenic misfolded transthyretin (TTR) in the myocardium. The gradual accumulation of insoluble TTR amyloid fibrils can result in restrictive cardiomyopathy and heart failure. Tafamidis (Vyndaqel®; Vyndamax®), a TTR stabilizer, has been approved for use in the treatment of adults with ATTR-CM in several countries. Tafamidis stabilizes both wild-type and mutant TTR, inhibiting the formation of TTR amyloid fibrils. In the pivotal phase III ATTR-ACT trial, tafamidis significantly reduced all-cause mortality and frequency of cardiovascular-related hospitalizations relative to placebo in patients with ATTR-CM. In addition, tafamidis recipients experienced significantly less deterioration in 6-minute walk test distance and quality of life than placebo recipients over the 30-month treatment period. Treatment benefits were largely consistent between patients with wild-type TTR and patients with a variant TTR genotype. Tafamidis was generally well tolerated in patients with ATTR-CM and, with a safety profile similar to that of placebo, tafamidis is suitable for long-term use. Given that treatment for this condition has in the past been largely limited to symptom management, tafamidis constitutes a valuable disease-modifying therapy for patients with ATTR-CM. References: Am J Cardiovasc Drugs. 2021 Jan;21(1):113-121.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H7CL2NO3
Molecular Weight
308.1163
Exact Mass
306.980286
Elemental Analysis
C, 54.58; H, 2.29; Cl, 23.01; N, 4.55; O, 15.58
CAS #
594839-88-0
Related CAS #
Tafamidis meglumine;951395-08-7;Tafamidis-d3
PubChem CID
11001318
Appearance
Typically exists as white to off-white solids at room temperature
Density
1.5±0.1 g/cm3
Boiling Point
486.7±40.0 °C at 760 mmHg
Flash Point
248.1±27.3 °C
Vapour Pressure
0.0±1.3 mmHg at 25°C
Index of Refraction
1.677
LogP
5.29
tPSA
63.33
SMILES
O=C(C1=CC=C2N=C(C3=CC(Cl)=CC(Cl)=C3)OC2=C1)O
InChi Key
TXEIIPDJKFWEEC-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H7Cl2NO3/c15-9-3-8(4-10(16)6-9)13-17-11-2-1-7(14(18)19)5-12(11)20-13/h1-6H,(H,18,19)
Chemical Name
2-(3,5-dichlorophenyl)benzo[d]oxazole-6-carboxylic acid
Synonyms
Fx-1006, PF06291826; Fx1006, PF-06291826; Fx 1006, Fx-1006A; PF 06291826; Tafamidis; Vyndaqel; TAFAMIDIS; 594839-88-0; Vyndamax; FX-1006; 2-(3,5-Dichlorophenyl)-1,3-Benzoxazole-6-Carboxylic Acid; 2-(3,5-Dichlorophenyl)-6-benzoxazole carboxylic acid; tafamidisum; 8FG9H9D31J;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~37.5 mg/mL (~121.71 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (8.11 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (8.11 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.11 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2455 mL 16.2274 mL 32.4549 mL
5 mM 0.6491 mL 3.2455 mL 6.4910 mL
10 mM 0.3245 mL 1.6227 mL 3.2455 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Real-World Effectiveness of High-Dose Tafamidis on Neurologic Disease Progression in Mixed-Phenotype Transthyretin Amyloid Cardiomyopathy
CTID: NCT06393465
Status: Recruiting
Date: 2024-06-03
Retrospective Study Collecting Neurological Follow-up of Hereditary Transthyretin Amyloidosis (ATTRv) Patients Included in B3461028 and B3461045.
CTID: NCT05560555
Status: Completed
Date: 2024-05-13
Long-term Safety of Tafamidis in Subjects With Transthyretin Cardiomyopathy
CTID: NCT02791230
Phase: Phase 3
Status: Completed
Date: 2024-05-03
A Study to Learn About Tafamidis in Patients With Transthyretin Amyloid Cardiomyopathy (ATTR-CM) in India
CTID: NCT06086353
Status: Recruiting
Date: 2024-04-25
Korean Post-marketing Surveillance Vyndamax® Capsules for the Treatment of Transthyretin Amyloid Cardiomyopathy
CTID: NCT04801329
Status: Recruiting
Date: 2024-01-12
Contact Us