yingweiwo

TAME HCl

Alias: Ts-Arg-Me Hydrochloride; TAME Hydrochloride; TAME HCl
Cat No.:V15717 Purity: ≥98%
TAME HCl is an inhibitor (blocker/antagonist) of the anaphase-promoting complex (APC/C or APC).
TAME HCl
TAME HCl Chemical Structure CAS No.: 1784-03-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of TAME HCl:

  • TAME
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
TAME HCl is an inhibitor (blocker/antagonist) of the anaphase-promoting complex (APC/C or APC). It binds to APC/C and prevents its activation through Cdc20 and Cdh1, producing a mitotic block. TAME HCl cannot penetrate cell membranes.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
By encouraging Cdc20's autoubiquitination at its N-terminal region, TAME hydrochloride removes Cdc20 from APC in the absence of an APC substrate. Through encouraging the binding of free Cdc20 to APC and preventing Cdc20 autoubiquitination, cyclin B1 counteracts the effects of TAME hydrochloride [2]. Two strategies are employed by TAME hydrochloride to stabilize cyclin B1 in Xenopus extracts. First, it slows down the initial ubiquitination of unmodified cyclin B1 by reducing kcat of the APCCdc20/cyclin B1 complex without changing Km. Secondly, in the presence of TAME hydrochloride, cyclin B1 can no longer stimulate Cdc20 binding to APC due to its ubiquitination. As a result, cyclin B1 ubiquitination stops before it reaches the necessary threshold for proteolysis [2].
References

[1]. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell. 2010 Oct 19;18(4):382-95.

[2]. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat Chem Biol. 2012 Feb 26;8(4):383-92.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H23CLN4O4S
Molecular Weight
378.87
Exact Mass
378.112
CAS #
1784-03-8
Related CAS #
TAME;901-47-3
PubChem CID
2723792
Appearance
White to off-white solid powder
Boiling Point
544.1ºC at 760mmHg
Melting Point
145-147(lit.)
Flash Point
282.9ºC
Vapour Pressure
6.73E-12mmHg at 25°C
Index of Refraction
-14 ° (C=4, H2O)
LogP
3.542
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
9
Heavy Atom Count
24
Complexity
503
Defined Atom Stereocenter Count
1
SMILES
CC1=CC=C(C=C1)S(=O)(=O)N[C@@H](CCCN=C(N)N)C(=O)OC.Cl
InChi Key
JIQFFACVQXXHMY-YDALLXLXSA-N
InChi Code
InChI=1S/C14H22N4O4S.ClH/c1-10-5-7-11(8-6-10)23(20,21)18-12(13(19)22-2)4-3-9-17-14(15)16;/h5-8,12,18H,3-4,9H2,1-2H3,(H4,15,16,17);1H/t12-;/m0./s1
Chemical Name
methyl (2S)-5-(diaminomethylideneamino)-2-[(4-methylphenyl)sulfonylamino]pentanoate;hydrochloride
Synonyms
Ts-Arg-Me Hydrochloride; TAME Hydrochloride; TAME HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~155 mg/mL (~409.11 mM)
H2O : ≥ 100 mg/mL (~263.94 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.58 mg/mL (6.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.58 mg/mL (6.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.58 mg/mL (6.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (263.94 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6394 mL 13.1971 mL 26.3943 mL
5 mM 0.5279 mL 2.6394 mL 5.2789 mL
10 mM 0.2639 mL 1.3197 mL 2.6394 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us