yingweiwo

Tamoxifen

Alias: trans-Tamoxifen; Crisafeno; Diemon; Tamoxifene; NSC-180973, Citofen; Istubol; ICI 46474, Nolvadex, ICI-46474, ICI46474, NSC 180973, tamoxifen, tamoxifeni citras, Novaldex
Cat No.:V1742 Purity: ≥98%
Tamoxifen (ICI-46474; NSC-180973; Nolvadex; Novaldex) is a potent and selective estrogen receptor modulator(SERM) with potential antitumor activity.
Tamoxifen
Tamoxifen Chemical Structure CAS No.: 10540-29-1
Product category: Autophagy
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Tamoxifen:

  • Tamoxifen Citrate
  • Tamoxifen-d5
  • Tamoxifen-d3 (tamoxifen-d3; ICI 47699-d3; (Z)-Tamoxifen-d3; trans-Tamoxifen-d3)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Tamoxifen (ICI-46474; NSC-180973; Nolvadex; Novaldex) is a potent and selective estrogen receptor modulator (SERM) with potential antitumor activity. It acts by competitively inhibiting estrogen binding to the ER receptors in breast tissues. In other tissues (e.g. endometrium), Tamoxifen acts as an agonist, and thus may be characterized as a selective estrogen-receptor modulator. Tamoxifen is the usual endocrine (anti-estrogen) therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting [1,2]. Tamoxifen can induce gene knockout of CreER(T2) transgenic mouse [3].

Biological Activity I Assay Protocols (From Reference)
Targets
ER/Estrogen receptor; HSP90
ln Vitro
Tamoxifen (ICI 47699) does not influence MDA-MB-231 cells, but it has a significant inhibitory effect on MCF-7 cells (EC50=1.41 μM) and a lessened inhibitory effect on T47D cells (EC50=2.5 μM) [2].
ln Vivo
Gene knockout occurs when premutation mice receive an injection of tamoxifen (75 mg/kg; administered every five days at 6 weeks of age) which causes floxed exon excision [3].
The Tamoxifen-inducible gene knockout strategy has clear advantages in that expression of a gene can be ablated in adult mice at will in a tissue specific manner. To study the role of Med1 in adult heart, 7-week old TmcsMed1-/- mice are given a daily Iintraperitoneal injection of Tamoxifen at a dose of 65 mg/kg for 5 days and killed at selected intervals thereafter. qPCR analysis of RNA shows that the Med1 expression begin to decrease after 3 days of Tamoxifen injection (about 70% decrease), and by 5 days of injection, Med1 expression is almost non-detectable in the heart. Tamoxifen-inducible cardiac-specific disruption of Med1 (TmcsMed1-/-) in adult mice causes dilated cardiomyopathy[8].
Enzyme Assay
Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value[5].
Cell Assay
Previous studies have shown that a styrylpyrone derivative (SPD) from a local tropical plant had antiprogestin and antiestrogenic effects in early pregnant mice models (Azimahtol et al. 1991). Antiprogestins and antiestrogens can be exploited as a therapeutic approach to breast cancer treatment and thus the antitumor activity of SPD was tested in three different human breast cancer cell lines that is: MCF- 7, T47D and MDA-MB-231, employing, the antiproliferative assay of Lin and Hwang (1991) slightly modified. SPD (10(-10) - 10(-6) M) exhibited strong antiproliferative activity in estrogen and progestin-dependent MCF-7 cells (EC50 = 2.24 x 10(-7) M) and in hormone insensitive MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but caused only partial inhibition of the estrogen- insensitive T47D cells (EC50 = 1.58 x 10(-6) M). However, tamoxifen showed strong inhibition of MCF-7 cells (EC50 = 1.41 x 10(-6) M) and to a lesser extent the T47D cells (EC50 = 2.5 x 10(-6) M) but did not affect the MDA-MB-231 cells. SPD at 1 microM exerted a beffer antiestrogenic activity than 1 microM tamoxifen in suppressing the growth of MCF-7 cells stimulated by 1 nM estradiol. Combined treatment of both SPD and tamoxifen at 1 microM showed additional inhibition on the growth of MCF-7 cells in culture. The antiproliferative properties of SPD are effective on both receptor positive and receptor negative mammary cancer cells, and thus appear to be neither dependent on cellular receptor status nor cellular hormone responses. This enhances in vivo approaches as tumors are heterogenous masses with varying receptor status[2].
Animal Protocol
Animal/Disease Models: Aldh1l1-cre/ERT2 x Ai95 mice[3]
Doses: 75 mg/kg
Route of Administration: Injected for 5 days at 6 weeks of age
Experimental Results: Resulted in the excision of the floxed exon and a gene knockout.
References
[1]. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998 Nov 26;339(22):1609-18.
[2]. Hawariah A, et al. In vitro response of human breast cancer cell lines to the growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenicity. Anticancer Res. 1998 Nov-Dec;18(6A):4383-6.
[3]. Jun Nagai, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019 May 16;177(5):1280-1292.e20.
[4]. Zhao R, et al. Tamoxifen enhances the Hsp90 molecular chaperone ATPase activity. PLoS One. 2010 Apr 1;5(4):e9934.
[5]. Kedjouar B, et al. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem. 2004 Aug 6;279(32):34048-61.
[6]. Feil S, et, al. Inducible Cre mice. Methods Mol Biol. 2009;530:343-63.
[7]. Laura Cooper, et al. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem. 2020 Sep 4.
[8]. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal DilatedCardiomyopathy in Mice. PLoS One. 2016 Aug 22;11(8):e0160755.
Additional Infomation
Tamoxifen is a tertiary amino compound and a stilbenoid. It has a role as an estrogen receptor antagonist, a bone density conservation agent, an estrogen receptor modulator, an estrogen antagonist, an angiogenesis inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor, an EC 1.2.3.1 (aldehyde oxidase) inhibitor and an antineoplastic agent. It derives from a hydride of a stilbene. ChEBI
Tamoxifen is a non-steroidal antiestrogen used to treat estrogen receptor positive breast cancers as well as prevent the incidence of breast cancer in high risk populations. Tamoxifen is used alone or as an adjuvant in these treatments. Tamoxifen may no longer be the preferred treatment for these types of cancers as patients generally have better survival, side effect profiles, and compliance with [anastrozole]. Tamoxifen was granted FDA approval on 30 December 1977. DrugBank
Tamoxifen is an Estrogen Agonist/Antagonist. The mechanism of action of tamoxifen is as a Selective Estrogen Receptor Modulator. FDA Pharm Classes
Tamoxifen is a nonsteroidal antiestrogen that is widely used in the treatment and prevention of breast cancer. Long term tamoxifen therapy has been associated with development of fatty liver, steatohepatitis, cirrhosis, and rare instances of clinically apparent acute liver injury. LiverTox
View More

Tamoxifen is a natural product found in Streptomyces nigra, Apis cerana, and Aspergillus sclerotiorum with data available. LOTUS - the natural products occurrence database Tamoxifen is an antineoplastic nonsteroidal selective estrogen receptor modulator (SERM). Tamoxifen competitively inhibits the binding of estradiol to estrogen receptors, thereby preventing the receptor from binding to the estrogen-response element on DNA. The result is a reduction in DNA synthesis and cellular response to estrogen. In addition, tamoxifen up-regulates the production of transforming growth factor B (TGFb), a factor that inhibits tumor cell growth, and down-regulates insulin-like growth factor 1 (IGF-1), a factor that stimulates breast cancer cell growth. NCI Thesaurus (NCIt)
Tamoxifen and its salts can cause cancer according to an independent committee of scientific and health experts. The CA Office of Environmental Health Hazard Assessment (OEHHA)
Tamoxifen is only found in individuals that have used or taken this drug. It is one of the selective estrogen receptor modulators with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the endometrium. Tamoxifen binds to estrogen receptors (ER), inducing a conformational change in the receptor. This results in a blockage or change in the expression of estrogen dependent genes. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects.


Tamoxifen is indicated to treat estrogen receptor positive metastatic breast cancer in adults, as an adjuvant in the treatment of early stage estrogen receptor positive breast cancer in adults, to reduce the risk of invasive breast cancer after surgery and radiation in adult women with ductal carcinoma in situ.
LiverTox Summary
Tamoxifen is a nonsteroidal antiestrogen that is widely used in the treatment and prevention of breast cancer. Long term tamoxifen therapy has been associated with development of fatty liver, steatohepatitis, cirrhosis, and rare instances of clinically apparent acute liver injury.
Tamoxifen is a selective estrogen receptor modulator that inhibits growth and promotes apoptosis in estrogen receptor positive tumors. It has a long duration of action as the active metabolite N-desmethyltamoxifen has a half life of approximately 2 weeks. It has a narrow therapeutic index as higher doses can lead to breathing difficulty or convulsions. Tamoxifen administration is also associated with an increased incidence of uterine malignancies.
Absorption
An oral dose of 20mg reaches a Cmax of 40ng/mL with a Tmax of 5 hours. The metabolite N-desmethyltamoxifen reaches a Cmax of 15ng/mL. 10mg of tamoxifen orally twice daily for 3 months results in a Css of 120ng/mL and a Css of 336ng/mL.
Route of Elimination
Tamoxifen is mainly eliminated in the feces. Animal studies have shown 75% of radiolabelled tamoxifen recovered in the feces, with negligible collection from urine. However, 1 human study showed 26.7% recovery in the urine and 24.7% in the feces.
Volume of Distribution
The volume of distribution of tamoxifen is approximately 50-60L/kg.
Clearance
The clearance of tamoxifen was 189mL/min in a study of six postmenopausal women.
Tamoxifen appears to be absorbed slowly following oral administration, with peak serum concentrations generally occurring about 3-6 hours after a single dose. The extent of absorption in humans has not been adequately determined, but limited data from animal studies suggest that the drug is well absorbed. Data from animal studies also suggest that tamoxifen and/or its metabolites undergo extensive enterohepatic circulation. McEvoy, G.K. (ed.). American Hospital Formulary Service. AHFS Drug Information. American Society of Health-System Pharmacists, Bethesda, MD. 2006., p. 1192 Hazardous Substances Data Bank (HSDB)
Following oral administration, peak serum tamoxifen concentrations average about 17 ng/mL after a single 10-mg dose, about 40 ng/mL after a single 20-mg dose, and 65-70 ng/mL after a single 40-mg dose; however, there is considerable interindividual variation in serum tamoxifen concentrations attained after single doses and at steady state with continuous dosing.
Tamoxifen can by hydroxylated to α-hydroxytamoxifen which is then glucuronidated or undergoes sulfate conjugation by sulfotransferase 2A1. Tamoxifen can also undergo N-oxidation by flavin monooxygenases 1 and 3 to tamoxifen N-oxide. Tamoxifen is N-dealkylated to N-desmethyltamoxifen by CYP2D6, CYP1A1, CYP1A2, CYP3A4, CYP1B1, CYP2C9, CYP2C19, and CYP3A5. N-desmethyltamoxifen can be sulfate conjugated to form N-desmethyltamoxifen sulfate, 4-hydroxylated by CYP2D6 to form endoxifen, or N-dealkylated again by CYP3A4 and CYP3A5 to N,N-didesmethyltamoxifen. N,N-didesmethyltamoxifen undergoes a substitution reaction to form tamoxifen metabolite Y, followed by ether cleavage to metabolite E, which can then be sulfate conjugated by sulfotransferase 1A1 and 1E1 or O-glucuronidated. Tamoxifen can also by 4-hydroxylated by CYP2D6, CYP2B6, CYP3A4, CYP2C9, and CYP2C19 to form 4-hydroxytamoxifen. 4-hydroxytamoxifen can undergo glucuronidation by UGT1A8, UGT1A10, UGT2B7, and UGT2B17 to tamoxifen glucuronides, sulfate conjugation by sulfotransferase 1A1 and 1E1 to 4-hydroxytamoxifen sulfate, or N-dealkylation by CYP3A4 and CYP3A5 to endoxifen. Endoxifen undergoes demethylation to norendoxifen, a reversible sulfate conjugation reaction via sulfotransferase 1A1 and 1E1 to 4-hydroxytamoxifen sulfate, sulfate conjugation via sulfotransferase 2A1 to 4-endoxifen sulfate, or glucuronidation via UGT1A8, UGT1A10, UGT2B7, or UGT2B15 to tamoxifen glucuronides.
The terminal elimination half-life of tamoxifen is 5 to 7 days, while the half-life of N-desmethyltamoxifen, the primary circulating metabolite, is approximately 14 days.
Tamoxifen competitively inhibits estrogen binding to its receptor, which is critical for it's activity in breast cancer cells. Tamoxifen leads to a decrease in tumor growth factor α and insulin-like growth factor 1, and an increase in sex hormone binding globulin. The increase in sex hormon binding globulin limits the amount of freely available estradiol. These changes reduce levels of factors that stimulate tumor growth. Tamoxifen has also been shown to induce apoptosis in estrogen receptor positive cells. This action is thought to be the result of inhibition of protein kinase C, which prevents DNA synthesis. Alternate theories for the apoptotic effect of tamoxifen comes from the approximately 3 fold increase in intracellular and mitochondrial calcium ion levels after administration or the induction of tumor growth factor β.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H29NO
Molecular Weight
371.51
Exact Mass
371.22491
Elemental Analysis
C, 84.06; H, 7.87; N, 3.77; O, 4.31
CAS #
10540-29-1
Related CAS #
Tamoxifen Citrate;54965-24-1;Tamoxifen (Standard);10540-29-1;Tamoxifen-d5;157698-32-3;Tamoxifen-d3;508201-30-7
PubChem CID
2733526
Appearance
White to off-white solid powder
Density
1.0±0.1 g/cm3
Boiling Point
482.3±33.0 °C at 760 mmHg
Melting Point
97-98ºC
Flash Point
140.0±27.7 °C
Vapour Pressure
0.0±1.2 mmHg at 25°C
Index of Refraction
1.582
LogP
7.88
tPSA
12.470
SMILES
O(C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])[H])C1C([H])=C([H])C(=C([H])C=1[H])/C(/C1C([H])=C([H])C([H])=C([H])C=1[H])=C(\C1C([H])=C([H])C([H])=C([H])C=1[H])/C([H])([H])C([H])([H])[H]
InChi Key
NKANXQFJJICGDU-QPLCGJKRSA-N
InChi Code
InChI=1S/C26H29NO/c1-4-25(21-11-7-5-8-12-21)26(22-13-9-6-10-14-22)23-15-17-24(18-16-23)28-20-19-27(2)3/h5-18H,4,19-20H2,1-3H3/b26-25-
Chemical Name
2-[4-[(Z)-1,2-diphenylbut-1-enyl]phenoxy]-N,N-dimethylethanamine
Synonyms
trans-Tamoxifen; Crisafeno; Diemon; Tamoxifene; NSC-180973, Citofen; Istubol; ICI 46474, Nolvadex, ICI-46474, ICI46474, NSC 180973, tamoxifen, tamoxifeni citras, Novaldex
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 74 mg/mL (199.2 mM)
Water:<1 mg/mL
Ethanol:74 mg/mL (199.2 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 5 mg/mL (13.46 mM) in 30% PEG400 0.5% Tween80 + 5% Propanediol 64.5%H2O (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.

Solubility in Formulation 2: 2.5 mg/mL (6.73 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.73 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.08 mg/mL (5.60 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: 2.08 mg/mL (5.60 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 2.08 mg/mL (5.60 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 7: ≥ 0.83 mg/mL (2.23 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 8: 0.83 mg/mL (2.23 mM) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 9: (saturation unknown) in

Corn oil:40 mg/mL or 107.67 mM (add these co-solvents sequentially from left to right, and one by one),
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 10: 40 mg/mL (107.67 mM) in Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6917 mL 13.4586 mL 26.9172 mL
5 mM 0.5383 mL 2.6917 mL 5.3834 mL
10 mM 0.2692 mL 1.3459 mL 2.6917 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Ovarian Suppression Evaluating Subcutaneous Leuprolide Acetate in Breast Cancer
CTID: NCT04906395
Phase: Phase 3
Status: Recruiting
Date: 2024-07-12
Umbrella Trial Testing Integrative Subtype Targeted Therapeutics in Estrogen Receptor Positive, HER2-Negative Breast Cancer
CTID: NCT05101564
Phase: Phase 2
Status: Active, not recruiting
Date: 2024-07-11
Functional Imaging in Prediction of Response to Abemaciclib for Advanced Hormone Receptor-Positive, HER2-Negative Breast Cancer
CTID: NCT06179303
Phase: Phase 2
Status: Recruiting
Date: 2024-07-11
A Study of Elacestrant Versus Standard Endocrine Therapy in Women and Men With ER+,HER2-, Early Breast Cancer With High Risk of Recurrence
CTID: NCT06492616
Phase: Phase 3
Status: Not yet recruiting
Date: 2024-07-10
An Adjuvant Endocrine-based Therapy Study of Camizestrant (AZD9833) in ER+/HER2- Early Breast Cancer (CAMBRIA-2)
CTID: NCT05952557
Phase: Phase 3
Status: Recruiting
Date: 2024-07-09
Biological Data
Contact Us