yingweiwo

Tariquidar dimesylate

Alias: XR 9576 dimesylate, D06008, XR9576 dimesylate, D 06008,XR-9576, Tariquidar dimesylate; Tariquidar dimesilate; 625375-84-0; UNII-U2JL9545E1; Tariquidar (dimesylate); U2JL9545E1; 625375-84-0 (mesylate); N-(2-(((4-(2-(3,4-Dihydro-6,7-dimethoxy-2-(1H)-isoquinolinyl)ethyl)phenyl)amino)-carbonyl)-4,5-dimethoxyphenyl)-3-quinolinecarboxamide dimesilate; Tariquidar dimesylate; Tariquidar dimesilate; D-06008dimesylate
Cat No.:V1756 Purity: ≥98%
Tariquidar dimesylate (formerly known as XR9576; D06008; XR-9576; D-06008), the dimesylate salt ofTariquidar, is a novel potent and selective noncompetitive inhibitor of P-glycoprotein (P-gp) with potential antitumor activity.
Tariquidar dimesylate
Tariquidar dimesylate Chemical Structure CAS No.: 625375-84-0
Product category: Estrogenprogestogen Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Tariquidar dimesylate:

  • Tariquidar (XR9576)
  • Tariquidar dihydrochloride (XR9576 dihydrochloride)
  • Tariquidar methanesulfonate hydrate (XR9576)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tariquidar dimesylate (formerly known as XR9576; D06008; XR-9576; D-06008), the dimesylate salt of Tariquidar, is a novel potent and selective noncompetitive inhibitor of P-glycoprotein (P-gp) with potential antitumor activity. It inhibits P-gp with a Kd of 5.1 nM in CHrB30 cells, and is able to reverse drug resistance in MDR cell Lines. Tariquidar is currently undergoing research as an adjuvant against multidrug resistance in cancer. Tariquidar non-competitively binds to the p-glycoprotein transporter, thereby inhibiting transmembrane transport of anticancer drugs. Inhibition of transmembrane transport may result in increased intracellular concentrations of an anticancer drug, thereby augmenting its cytotoxicity.

Biological Activity I Assay Protocols (From Reference)
Targets
P-gp (Kd = 5.1 nM)[1]
ln Vitro

In vitro activity: Tariquidar displays high-affinity binding to P-gp with Bmax of 275 pmol/mg. Tariquidar shows non-competitive interaction with the P-gp substrates vinblastine and paclitaxel. Tariquidar increases the steady-state accumulation of these cytotoxics in CHr<>/supB30 cells to levels observed in non-P-gp-expressing AuxB1 cells with EC50 of 487 nM. Tariquidar is able to inhibit the vanadate-sensitive ATPase activity of P-gp by 60-70%, with potent IC50 values of 43 NM. Tariquidar may inhibit other resistance mechanisms at higher concentrations. 1 μM Tariquidar abrogates ABCG2 (BCRP)-mediated resistance to camptothecins in vitro. Tariquidar potentiates the cyto-toxicity of several drugs including doxorubicin, paclitaxel, etoposide, and vincristine; complete reversal of resistance is achieved in the presence of 25- 80 nM Tariquidar. In MC26, a murine colon carcinoma cell line with intrinsic chemoresistance, the doxorubicin IC50 is fivefold lower in the presence of 0.1 μM Tariquidar (36 vs 7 nM). In murine mammary carcinoma, human small-cell lung carcinoma and human ovarian carcinoma cell lines with acquired chemotherapeutic resistance (EMT6/AR1.0, H69/LX4 and 2780 AD), the in vitro doxorubicin IC50 is 22-150-fold lower in the presence of 0.1 μM Tariquidar. P-gp inhibition persists for 23 h after removal of Tariquidar from the culture system. Tariquidar restored the cyto-toxicity of doxorubicin and vinblastine in the National Cancer Institute (NCI)/ADRRES multicellular tumor spheroid model derived from the MCF7WT breast cancer cell line.


Kinase Assay: AuxB1 and CHrB30 cells are grown to confluency in 12-well (24 mm) tissue culture dishes and the steady-state accumulation of [3H]-vinblastine is measured. Accumulation is initiated by the addition of 0.1 μ Ci [3H]-vinblastine and unlabelled vinblastine to a final concentration of 100 nM . The accumulation of [3H]-paclitaxel is measured using 0.1 μ Ci [3H]-paclitaxel and unlabelled drug to a final concentration of 1 μM . Cells are incubated in a reaction volume of 1 mL for 60 min at 37 ℃ under 5% CO2 in order to reach steady-state. The effect of the modulators XR9576 on [3H]-ligand accumulation is investigated in the concentration range 10-9 - 10-6 M. Modulators are added from a DMSO stock giving a final solvent concentration of 0.2 % (v/v). Following cell harvesting, accumulated drug is measured by liquid scintillation counting and normalized for cell protein content. Plots of amount accumulated as a function of modulator concentration are fitted with the general dose-response equation: Y={(a-b)/(1+(X/c)d)}+b Where: Y=response; a=initial response; b=final response; c=EC50 concentration; d=slope value; X=drug concentration.


Cell Assay: Cells are seeded into 96-well plates at 800/well, in 100 μL of medium and incubated for 4 h at 37 ℃. Varying concentrations of modulator or solvent control (50 μL/well) are subsequently added and incubated for an additional 1 h before the addition of the cytotoxic drug. The cytotoxic drug (50 μL) is added to give a range of final concentrations in quadruplicate wells. After incubation for an additional 4 days, cell proliferation of adherent cells is assessed using the sulforhodamine B assay.

ln Vivo
Tariquidar (2- 8 mg/kg p.o.) is found to significantly potentiate the antitumor activity of doxorubicin (5 mg/kg, i.v.) against MC26 murine colon carcinoma in vivo. In human carcinoma xenografts, coadministration of XR9576 (6 -12 mg/kg p.o.) fully restored the antitumor activity of paclitaxel, etoposide, and vincristine against two highly resistant MDR human tumor xenografts (2780AD, H69/LX4) in nude mice.
Enzyme Assay
ATP hydrolytic activity of P-gp in CHrB30 membranes[1]
A previously described colorimetric assay was used to measure inorganic phosphate liberation following ATP hydrolysis (Chifflet et al., 1988). Membranes (1 μg protein) were incubated with Na2ATP (2 mm) in a total assay volume of 50 μl in buffer containing (mm): Tris pH 7.4 50, MgSO4 5, 0.02% NaN3, NH4Cl 150 for 20 min at 37°C. The ATPase activity was linear to 40 min at 37°C. Modulators (from DMSO stocks) and the ATPase inhibitor vanadate, were added in the concentration range 10−9–10–5 m. The final DMSO concentration was always <1%, a level known not to alter ATPase activity. The effect of drugs on the ATPase activity was fitted by the general dose-response relationship (see above).
Specific drug binding to P-glycoprotein[1]
A rapid filtration assay was used to measure the binding of [3H]-vinblastine, [3H]-paclitaxel and [3H]-XR9576 to P-gp in CHrB30 membranes as previously described (Ferry et al., 1992). Membranes were incubated with appropriate radioligand in a total buffer volume of 200 μl (50 mm Tris pH 7.4) for a period of 2–3 h to reach equilibrium. Washing buffer (3 ml) containing 20 mm MgSO4, 20 mm Tris (pH 7.4) was then added and the samples filtered under vacuum through a single GF/F filter in a filtration manifold to separate bound and free ligand. After further washing (2×3 ml) the amount of bound ligand was determined by liquid scintillation counting. Non-specific binding was defined as the amount of [3H]-ligand bound in the presence of at least a 100 fold excess of competing ligand (indicated in Results) and was subtracted from all values.
Determination of the capacity and affinity of [3H]-ligand binding was achieved by saturation isotherm analysis. Membranes were incubated with increasing concentration of labelled drug and the amount bound (pmol mg−1) plotted as a function of free ligand concentration.
Cell Assay
Cell culture[1]
The Chinese hamster ovary parental (sensitive) AuxB1 and the resistant CHrB30 cells were grown as previously described in α-minimum essential medium (α-MEM) containing 10% foetal calf serum (Kartner et al., 1983). The CHrB30 cells, derived from AuxB1 cells by step wise selection in colchicine (Kartner et al., 1983), express P-gp and selection pressure was maintained by supplementing media with 30 μg ml−1 colchicine.
Plasma membrane preparation[1]
Plasma membranes were prepared following disruption of CHrB30 cells using nitrogen cavitation and collection with sucrose density centrifugation as previously described (Lever, 1977). The final membrane preparation was stored at −70°C, at protein concentrations of 5–10 mg ml–1 in buffer containing 0.25 m sucrose, 10 mm Tris HCI (pH 7.5) and including the protease inhibitors leupeptin (0.1 mg ml−1), pepstatin A (0.1 mg ml−1) and benzamidine (1 mm).
Steady-state drug accumulation assay[1]
AuxB1 and CHrB30 cells were grown to confluency in 12-well (24 mm) tissue culture dishes and the steady-state accumulation of [3H]-vinblastine was measured as previously described (Martin et al., 1997). Accumulation was initiated by the addition of 0.1 μCi [3H]-vinblastine and unlabelled vinblastine to a final concentration of 100 nm. The accumulation of [3H]-paclitaxel was measured using 0.1 μCi [3H]-paclitaxel and unlabelled drug to a final concentration of 1 μm. Cells were incubated in a reaction volume of 1 ml for 60 min at 37°C under 5% CO2 in order to reach steady-state. The effect of the modulators XR9576 and GF120918 on [3H]-ligand accumulation was investigated in the concentration range 10−9–10−6 m. Modulators were added from a DMSO stock giving a final solvent concentration of 0.2% (v v−1). Following cell harvesting, accumulated drug was measured by liquid scintillation counting and normalized for cell protein content. Plots of amount accumulated as a function of modulator concentration were fitted with the general dose-response equation (De Lean et al., 1978).
The accumulation of [3H]-XR9576 was also measured in AuxB1 and CHrB30 cells using several concentrations of radiolabelled drug (1–300 nm) in the presence and absence of 1 μm GF120918 and followed over a 60 min period, as described above.
Animal Protocol
Dissolved in5% (w/v) D-( 1)-glucose (dextrose) solution; 8 mg/kg ; Coadministration of Tariquidar (p.o.) with doxorubicin (5 mg/kg, i.v.)
Murine colon carcinoma xenografts MC26
References
[1]. Br J Pharmacol.1999 Sep;128(2):403-11.
[2]. Cancer Res.2001 Jan 15;61(2):749-58.
Additional Infomation
1 The kinetics and nature of equilibrium binding were used to characterize the molecular interaction of the anthranilic acid derivative [3H]-XR9576 with the multidrug resistance P-glycoprotein (P-gp). XR9576 displayed specific high-affinity binding to P-gp (Bmax = 275 pmol mg-1, Kd = 5.1 nM). The transport substrates [3H]-vinblastine and [3H]-paclitaxel displayed 4 fold and 20 fold lower affinity respectively for P-gp. The duration of action of XR9576 with P-gp was increased in comparison to that of vinblastine which displayed a slower rate of association and a faster dissociation rate. 2 The relative affinities of several modulators and transport substrates to interact with P-gp were determined from displacement drug equilibrium binding assays. Vinblastine and paclitaxel could only fractionally displace [3H]-XR9576 binding, displaying Ki values significantly different from their measured Kd values. This suggests a non-competitive interaction between XR9576 and the P-gp substrates vinblastine and paclitaxel. 3 XR9576 was shown to be a potent modulator of P-gp mediated [3H]-vinblastine and [3H]-paclitaxel transport as it increased the steady-state accumulation of these cytotoxics in CHrB30 cells to levels observed in non-P-gp-expressing AuxB1 cells (EC50 = 487+/-50 nM). This inhibition of drug transport is not mediated through competition for transport since [3H]-XR9576 accumulation was not influenced by P-gp expression or function. 4 These results demonstrate that the P-gp modulator XR9576 exhibits greater selectivity, duration of inhibition and potency of interaction with this transporter than any other reported modulators. Several lines of evidence suggest that XR9576 inhibits P-gp function by binding at a site which is distinct from the site of interaction of transport substrates. The two sites may be classified as serving modulatory or transport functions.[1]
The overexpression of P-glycoprotein (P-gp) on the surface of tumor cells causes multidrug resistance (MDR). This protein acts as an energy-dependent drug efflux pump reducing the intracellular concentration of structurally unrelated drugs. Modulators of P-gp function can restore the sensitivity of MDR cells to such drugs. XR9576 is a novel anthranilic acid derivative developed as a potent and specific inhibitor of P-gp, and in this study we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro activity of XR9576 was evaluated using a panel of human (H69/LX4, 2780AD) and murine (EMT6 AR1.0, MC26) MDR cell lines. XR9576 potentiated the cytotoxicity of several drugs including doxorubicin, paclitaxel, etoposide, and vincristine; complete reversal of resistance was achieved in the presence of 25-80 nM XR9576. Direct comparative studies with other modulators indicated that XR9576 was one of the most potent modulators described to date. Accumulation and efflux studies with the P-gp substrates, [3H]daunorubicin and rhodamine 123, demonstrated that XR9576 inhibited P-gp-mediated drug efflux. The inhibition of P-gp function was reversible, but the effects persisted for >22 h after removal of the modulator from the incubation medium. This is in contrast to P-gp substrates such as cyclosporin A and verapamil, which lose their activity within 60 min, suggesting that XR9576 is not transported by P-gp. Also, XR9576 was a potent inhibitor of photoaffinity labeling of P-gp by [3H]azidopine implying a direct interaction with the protein. In mice bearing the intrinsically resistant MC26 colon tumors, coadministration of XR9576 potentiated the antitumor activity of doxorubicin without a significant increase in toxicity; maximum potentiation was observed at 2.5-4.0 mg/kg dosed either i.v. or p.o. In addition, coadministration of XR9576 (6-12 mg/kg p.o.) fully restored the antitumor activity of paclitaxel, etoposide, and vincristine against two highly resistant MDR human tumor xenografts (2780AD, H69/LX4) in nude mice. Importantly all of the efficacious combination schedules appeared to be well tolerated. Furthermore, i.v. coadministration of XR9576 did not alter the plasma pharmacokinetics of paclitaxel. These results demonstrate that XR9576 is an extremely potent, selective, and effective modulator with a long duration of action. It exhibits potent i.v. and p.o. activity without apparently enhancing the plasma pharmacokinetics of paclitaxel or the toxicity of coadministered drugs. Hence, XR9576 holds great promise for the treatment of P-gp-mediated MDR cancers.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C40H46N4O12S2
Molecular Weight
838.94
Exact Mass
838.255
Elemental Analysis
C, 57.27; H, 5.53; N, 6.68; O, 22.88; S, 7.64
CAS #
625375-84-0
Related CAS #
206873-63-4;625375-84-0 (mesylate);1992047-62-7 (2HCl); 625375-83-9 (methanesulfonate hydrate)
PubChem CID
10079227
Appearance
Solid powder
LogP
7.939
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
14
Rotatable Bond Count
11
Heavy Atom Count
58
Complexity
1130
Defined Atom Stereocenter Count
0
SMILES
S(C)(=O)(=O)O.S(C)(=O)(=O)O.O(C)C1C(=CC2=C(C=1)CN(CCC1C=CC(=CC=1)NC(C1=CC(=C(C=C1NC(C1=CN=C3C=CC=CC3=C1)=O)OC)OC)=O)CC2)OC
InChi Key
FBCFBFPCZHHRMA-UHFFFAOYSA-N
InChi Code
InChI=1S/C38H38N4O6.2CH4O3S/c1-45-33-18-25-14-16-42(23-28(25)19-34(33)46-2)15-13-24-9-11-29(12-10-24)40-38(44)30-20-35(47-3)36(48-4)21-32(30)41-37(43)27-17-26-7-5-6-8-31(26)39-22-27;2*1-5(2,3)4/h5-12,17-22H,13-16,23H2,1-4H3,(H,40,44)(H,41,43);2*1H3,(H,2,3,4)
Chemical Name
N-[2-[[4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide dimesylate
Synonyms
XR 9576 dimesylate, D06008, XR9576 dimesylate, D 06008,XR-9576, Tariquidar dimesylate; Tariquidar dimesilate; 625375-84-0; UNII-U2JL9545E1; Tariquidar (dimesylate); U2JL9545E1; 625375-84-0 (mesylate); N-(2-(((4-(2-(3,4-Dihydro-6,7-dimethoxy-2-(1H)-isoquinolinyl)ethyl)phenyl)amino)-carbonyl)-4,5-dimethoxyphenyl)-3-quinolinecarboxamide dimesilate; Tariquidar dimesylate; Tariquidar dimesilate; D-06008dimesylate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 296 mg/mL
Water:< 8.9 mg/mL
Ethanol:< 8.9 mg/mL
Solubility (In Vivo)
O=C(C1=CC2=CC=CC=C2N=C1)NC3=CC(OC)=C(OC)C=C3C(NC4=CC=C(CCN5CC6=C(C=C(OC)C(OC)=C6)CC5)C=C4)=O.OS(=O)(C)=O.OS(=O)(C)=O
 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1920 mL 5.9599 mL 11.9198 mL
5 mM 0.2384 mL 1.1920 mL 2.3840 mL
10 mM 0.1192 mL 0.5960 mL 1.1920 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Phase I Trial of Tariquidar (XR9576) in Combination With Doxorubicin, Vinorelbine, or Docetaxel in Pediatric Patients With Solid Tumors
CTID: NCT00011414
Phase: Phase 1
Status: Completed
Date: 2019-07-16
PET Imaging With Tc-94m Sestamibi to Assess Resistance to Chemotherapy
CTID: NCT00082368
Phase: Phase 2
Status: Completed
Date: 2017-08-17
Tariquidar and Docetaxel to Treat Patients With Lung, Ovarian, Renal and Cervical Cancer
CTID: NCT00069160
Phase: Phase 2
Status: Completed
Date: 2012-10-12
Surgery Plus Chemotherapy (Doxorubicin, Vincristine and Etoposide), Mitotane, and Tariquidar to Treat Adrenocortical Cancer
CTID: NCT00071058
Phase: Phase 2
Status: Completed
Date: 2012-09-18
A Double-Blind, Randomized, Placebo-Controlled, Multicenter, Phase III Study of Tariquidar + Paclitaxel/Carboplatin as First-Line Therapy in Non-Small Cell Lung Cancer (NSCLC)
CTID: NCT00042302
Phase: Phase 3
Status: Terminated
Date: 2012-05-23
Biological Data
  • Tariquidar dimesylate

    The effect of modulator on the steady-state accumulation of [3H]-vinblastine (100 nM) and [3H]-paclitaxel (1 μM) was measured in CHrB30 cells at 37°C as described in Methods.Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar dimesylate

    The effect of XR9576, GF120918, XR9051 and vanadate on the ATPase activity of P-gp-containing CHrB30 membranes (1 μg).Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar dimesylate

    Saturation isotherms of [3H]-XR9576, [3H]-vinblastine and [3H]-paclitaxel binding to CHrB30 membranes.Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar dimesylate

  • Tariquidar dimesylate

  • Tariquidar dimesylate

Contact Us