Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Tenofovir maleate (formerly also known as GS-1278; PMPA; TDF) is an approved anti-HIV drug that blocks reverse transcriptase and hepatitis B virus infections. Tenofovir is an antiretroviral medication used to prevent and treat HIV/AIDS and to treat chronic hepatitis B. Tenofovir reduces the viral cytopathic effect of HIV-1(IIIB), HIV-2(ROD) and HIV(EHO) with EC50 of 1.15 μg/mL, 1.12 μg/mL and 1.05 μg/mL in MT-4 cells. Tenofovir also reduces the viral cytopathic effect of SIV(mac251) , SIV(B670) ,SHIV(89.6) and SHIV(RTSHIV). Tenofovir is the active substance of tenofovir disoproxil which is a prodrug that is used because of its better absorption in the gut.
Targets |
Nucleotide reverse transcriptase; HIV
|
---|---|
ln Vitro |
Tenofovir has a deleterious effect on the cell viability of HK-2 cells, with IC50 values of 9.21 and 2.77 μM at 48 and 72 hours in MTT experiment, respectively. Tenofovir lowers ATP levels in HK-2 cells. Tenofovir (3.0 to 28.8 μM) enhances oxidative stress and protein carbonylation in HK-2 cells. In addition, tenofovir can induce apoptosis in HK-2 cells, and apoptosis is triggered through mitochondrial damage [1]. Tenofovir and M48U1 formulated in 0.25% HEC both suppressed the replication of R5-tropic HIV-1BaL and X4-tropic HIV-1IIIb in activated PBMC and inhibited several laboratory strains and patient-derived HIV-1 isolates. The combined formulation of M48U1 and tenofovir in 0.25% HEC showed synergistic antiretroviral effectiveness against R5-tropic HIV-1BaL infection and was non-toxic to PBMC [2].
|
ln Vivo |
Tenofovir disoproxil fumarate (20, 50, 140, or 300 mg/kg) administered to BLT mice resulted in dose-dependent action in response to a vaginal HIV challenge in BLT humanized mice. HIV transmission in BLT mice is greatly decreased by tenofovir disoproxil fumarate (50, 140, and 300 mg/kg) [3]. In woodchucks with a chronic WHV infection, tenofovir disoproxil fumarate (0.5, 1.5, or 5.0 mg/kg/day) causes a dose-dependent reduction in serum viremia. A woodchuck model of chronic HBV infection shows that tenofovir disoproxil fumarate is both safe and efficacious [4].
|
Cell Assay |
Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5- and X4-tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission[2].
|
Animal Protocol |
The efficacy of HIV pre-exposure prophylaxis (PrEP) relies on adherence and may also depend on the route of HIV acquisition. Clinical studies of systemic tenofovir disoproxil fumarate (TDF) PrEP revealed reduced efficacy in women compared to men with similar degrees of adherence. To select the most effective PrEP strategies, preclinical studies are critically needed to establish correlations between drug concentrations (pharmacokinetics [PK]) and protective efficacy (pharmacodynamics [PD]). We utilized an in vivo preclinical model to perform a PK-PD analysis of systemic TDF PrEP for vaginal HIV acquisition. TDF PrEP prevented vaginal HIV acquisition in a dose-dependent manner. PK-PD modeling of tenofovir (TFV) in plasma, female reproductive tract tissue, cervicovaginal lavage fluid and its intracellular metabolite (TFV diphosphate) revealed that TDF PrEP efficacy was best described by plasma TFV levels. When administered at 50 mg/kg, TDF achieved plasma TFV concentrations (370 ng/ml) that closely mimicked those observed in humans and demonstrated the same risk reduction (70%) previously attained in women with high adherence. This PK-PD model mimics the human condition and can be applied to other PrEP approaches and routes of HIV acquisition, accelerating clinical implementation of the most efficacious PrEP strategies.[3]
Tenofovir disoproxil fumarate (TDF) is a nucleotide analogue approved for treatment of human immunodeficiency virus (HIV) infection. TDF also has been shown in vitro to inhibit replication of wild-type hepatitis B virus (HBV) and lamivudine-resistant HBV mutants and to inhibit lamivudine-resistant HBV in patients and HBV in patients coinfected with the HIV. Data on the in vivo efficacy of TDF against wild-type virus in non-HIV-coinfected or lamivudine-naïve chronic HBV-infected patients are lacking in the published literature. The antiviral effect of oral administration of TDF against chronic woodchuck hepatitis virus (WHV) infection, an established and predictive animal model for antiviral therapy, was evaluated in a placebo-controlled, dose-ranging study (doses, 0.5 to 15.0 mg/kg of body weight/day). Four weeks of once-daily treatment with TDF doses of 0.5, 1.5, or 5.0 mg/kg/day reduced serum WHV viremia significantly (0.2 to 1.5 log reduction from pretreatment level). No effects on the levels of anti-WHV core and anti-WHV surface antibodies in serum or on the concentrations of WHV RNA or WHV antigens in the liver of treated woodchucks were observed. Individual TDF-treated woodchucks demonstrated transient declines in WHV surface antigen serum antigenemia and, characteristically, these woodchucks also had transient declines in serum WHV viremia, intrahepatic WHV replication, and hepatic expression of WHV antigens. No evidence of toxicity was observed in any of the TDF-treated woodchucks. Following drug withdrawal there was prompt recrudescence of WHV viremia to pretreatment levels. It was concluded that oral administration of TDF for 4 weeks was safe and effective in the woodchuck model of chronic HBV infection.[4]
|
References |
|
Molecular Formula |
C₁₃H₁₈N₅O₈P
|
---|---|
Molecular Weight |
403.28
|
Exact Mass |
403.089
|
CAS # |
1236287-04-9
|
Related CAS # |
Tenofovir Disoproxil fumarate;202138-50-9;Tenofovir;147127-20-6;Tenofovir hydrate;206184-49-8;Tenofovir diphosphate;166403-66-3
|
PubChem CID |
53302693
|
Appearance |
Typically exists as solid at room temperature
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
12
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
27
|
Complexity |
473
|
Defined Atom Stereocenter Count |
1
|
SMILES |
C[C@H](CN1C=NC2=C(N=CN=C21)N)OCP(=O)(O)O.C(=C\C(=O)O)\C(=O)O
|
InChi Key |
OPQKUDVCYGLXAH-REVJHSINSA-N
|
InChi Code |
InChI=1S/C9H14N5O4P.C4H4O4/c1-6(18-5-19(15,16)17)2-14-4-13-7-8(10)11-3-12-9(7)14;5-3(6)1-2-4(7)8/h3-4,6H,2,5H2,1H3,(H2,10,11,12)(H2,15,16,17);1-2H,(H,5,6)(H,7,8)/b;2-1-/t6-;/m1./s1
|
Chemical Name |
[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethylphosphonic acid;(Z)-but-2-enedioic acid
|
Synonyms |
GS 1278 maleate PMPA maleate TDF maleateGS 1278 GS1278GS-1278PMPA TDF
GS1275 GS-1275 GS 1275 Tenofovir TFV gel PMPA
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4797 mL | 12.3983 mL | 24.7967 mL | |
5 mM | 0.4959 mL | 2.4797 mL | 4.9593 mL | |
10 mM | 0.2480 mL | 1.2398 mL | 2.4797 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.