yingweiwo

Terazosin

Alias: Vasocard; terazosin; 63590-64-7; Terazosine; Fosfomic; Blavin; Flumarc; Vasomet; Terazosina; Hytrin
Cat No.:V13118 Purity: ≥98%
Terazosin (Vasocard;Hytrin) is a selective alpha1-antagonist (α1-adrenoceptor antagonist, or alpha-blockers) that has been approved for treatment of benign prostatic hyperplasia (BPH).
Terazosin
Terazosin Chemical Structure CAS No.: 63590-64-7
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Terazosin:

  • Terazosin HCl dihydrate
  • (R)-Terazosin
  • (S)-Terazosin
  • Terazosin HCl
  • Terazocin Hydrochloride (anhydrous)
  • Terazosin-d8
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Terazosin (Vasocard; Hytrin) is a selective alpha1-antagonist (α1-adrenoceptor antagonist, or alpha-blockers) that has been approved for treatment of benign prostatic hyperplasia (BPH). It can also be used for high blood pressure but a less preferred option.

Biological Activity I Assay Protocols (From Reference)
Targets
α1-adrenoceptor
ln Vitro
Terazosin does not distinguish between the numerous clonal α1-adrenergic receptor subtypes that are temporarily expressed in COS cells [1].
ln Vivo
For the treatment of ureteral stones, terazosin may be given to facilitate stone transit. It has been observed that terazosin is a safe and effective treatment for distal ureteral stones, particularly those that measure more than 5 mm [3].
Cell Assay
In the current study, various identification techniques were employed to ascertain the mode of action of the cytotoxic effect. With terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, apoptotic cells can be identified in situ. After PC-3 cells were treated with 100 μM terazosin for 12 hours, the results indicate a positive response.
Animal Protocol
Terazosin, a water-soluble alpha 1 antagonist that can be administered in high doses intraventricularly was used to study the relationship between brain alpha 1 adrenoceptor neurotransmission and behavioral activation in the mouse. The antagonist was found to produce a dose-dependent, complete inhibition of motor activity and catalepsy which were reversed preferentially by coinfusion of an alpha 1 agonist (phenylephrine) compared to a D1 (SKF38393) or a D2 agonist, (quinpirole). Blockade of central beta-1 (betaxolol), alpha-2 (RX821002) or beta-2 (ICI 118551) adrenoceptors had smaller or non-significant effects. Terazosin's selectivity for alpha 1 receptors versus dopaminergic receptors was verified under the present conditions by showing that the intraventricularly administered antagonist protected striatal and cerebral cortical alpha 1 receptors but not striatal or cortical D1 receptors from in vivo alkylation by N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroxyquinoline. That its effect was due to blockade of brain rather than peripheral receptors was shown by the finding that intraperitoneal doses of terazosin three to 66 times greater than the maximal intraventricular dose produced less behavioral inhibition. Intraventricular terazosin also produced hypothermia and a reduced respiratory rate suggestive of a reduced sympathetic outflow. However, external heat did not affect the inactivity, and captopril, a hypotensive agent, did not mimic it. Terazosin did not impair performance on a horizontal wire test or the ability to make co-ordinated movements in a swim test suggesting that its activity-reducing effect was not due to sedation and may have a motivational or sensory gating component. It is concluded that central alpha 1-noradrenergic neurotransmission is required for behavioral activation to environmental change in the mouse and may operate on sensorimotor and motivational processes. Neuroscience. 1999;94(4):1245-52.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Approximately 90%.
Approximately 10% of the oral dose is excreted unchanged in the urine and approximately 20% is excreted in the feces. 40% of the total dose is eliminated in urine and 60% of the total dose is eliminated in the feces.
25L to 30L.
Plasma clearance is 80mL/min and renal clearance is 10mL/min.
Metabolism / Metabolites
The majority of terazosin is hepatically metabolized. The metabolites recovered include 6-O-demethyl terazosin, 7-O-methyl terazosin, a piperozine derivative, and a diamine derivative.
Hepatic. One of the four metabolites identified (piperazine derivative of terazosin) has antihypertensive activity.
Route of Elimination: Approximately 10% of an orally administered dose is excreted as parent drug in the urine and approximately 20% is excreted in the feces.
Half Life: 12 hours
Biological Half-Life
Terazosin has a mean half life 12 hours though this can be as high as 14 hours in patients over 70 years and as low as 11.4 hours in patients 20 to 39 years old.
Toxicity/Toxicokinetics
Toxicity Summary
Terazosin selectively and competitively inhibits vascular postsynaptic alpha(1)-adrenergic receptors, resulting in peripheral vasodilation and a reduction of vascular resistance and blood pressure. Unlike the nonselective alph-adrenergic blockers phenoxybenzamine and phentolamine, terazosin does not block presynaptic alpha(2)-receptors and, hence, does not cause reflex activation of norepinephrine release to produce reflex tachycardia.
Hepatotoxicity
Terazosin has been associated with a low rate of serum aminotransferase elevations that in controlled trials was no higher than with placebo therapy. These elevations were transient and did not require dose modification. Instances of serum enzyme elevations, but no instances of clinically apparent acute liver injury with jaundice due to terazosin, have been published. Furthermore, product labels do not include discussion of hepatic toxicity. Cholestatic hepatitis and jaundice have been reported with other alpha-adrenergic blockers. Thus, acute symptomatic liver injury due to terazosin must be exceedingly rare if it occurs at all.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Because no information is available on the use of terazosin during breastfeeding, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information in nursing mothers was not found as of the revision date. However, the pharmacologically similar drug prazosin does not affect serum prolactin concentration in patients with hypertension. The prolactin level in a mother with established lactation may not affect her ability to breastfeed.
Protein Binding
90-94%.
Toxicity Data
LD50: 259.3mg/kg (parental-intravenous, Mouse) (A308)
References

[1]. Drugs for treatment of benign prostatic hyperplasia: affinity comparison at cloned alpha 1-adrenoceptor subtypes and in human prostate. J Auton Pharmacol. 1996 Feb;16(1):21-8.

[2]. Pharmacological tolerance to alpha 1-adrenergic receptor antagonism mediated by terazosin in humans. J Clin Invest. 1992 Nov;90(5):1763-8.

[3]. Efficacy of combination terazosin and nifedipine therapy in postoperative treatment of distal ureteral stones after transurethral ureteroscopic lithotripsy. J Int Med Res. 2020 Apr;48(4):300060520904851.

Additional Infomation
Terazosin is a member of quinazolines, a member of piperazines, a member of furans and a primary amino compound. It has a role as an antineoplastic agent, an antihypertensive agent and an alpha-adrenergic antagonist.
Terazosin is a quinazoline derivative alpha-1-selective adrenergic blocking agent indicated for benign prostatic hyperplasia and hypertension. Terazosin blocks adrenaline's action on alpha-1 adrenergic receptors, causing relaxation of smooth muscle in blood vessels and the prostate.
Terazosin is an alpha-Adrenergic Blocker. The mechanism of action of terazosin is as an Adrenergic alpha-Antagonist.
Terazosin is a nonselective alpha-1 adrenergic antagonist used in the therapy of hypertension and benign prostatic hypertrophy. Terazosin therapy is associated with a low rate of transient serum aminotransferase elevations and to rare instances of clinically apparent acute liver injury.
Terazosin is a selective alpha 1 antagonist used for treatment of symptoms of prostate enlargement (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. It works by blocking the action of adrenaline on smooth muscle of the bladder and the blood vessel walls.
See also: Terazosin Hydrochloride (has salt form).
Drug Indication
Terazosin is indicated for use in treating symptomatic benign prostatic hyperplasia and hypertension.
FDA Label
Mechanism of Action
Terazosin is selective for alpha-1-adrenoceptors but not their individual subtypes. Inhibition of these alpha-1-adrenoceptors results in relaxation of smooth muscle in blood vessels and the prostate, lowering blood pressure and improving urinary flow. Smooth muscle cells accounts for roughly 40% of the volume of the prostate and so their relaxation reduces pressure on the urethra. It has also been shown that catecholamines induce factors responsible for mitogenesis and alpha-1-adrenergic receptor blockers inhibit this effect. A final long term mechanism of terazosin and other alpha-1-adrenergic receptor blockers is the induction of apoptosis of prostate cells. Treatment with terazosin enhances the expression of transforming growth factor beta-1 (TGF-beta1), which upregulates p27kip1, and the caspase cascade.
Pharmacodynamics
Terazosin is a quinazoline derivative alpha-1-selective adrenergic blocker.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H25N5O4ELEMENTALANALYSIS
Molecular Weight
387.43
Exact Mass
387.191
CAS #
63590-64-7
Related CAS #
Terazosin hydrochloride dihydrate;70024-40-7;(R)-Terazosin;109351-34-0;(S)-Terazosin;109351-33-9;Terazosin hydrochloride;63074-08-8;Terazosin-d8;1006718-20-2
PubChem CID
5401
Appearance
Typically exists as solid at room temperature
Density
1.332 g/cm3
Boiling Point
664.5ºC at 760 mmHg
Melting Point
281-283°C
Flash Point
355.7ºC
LogP
1.64
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
4
Heavy Atom Count
28
Complexity
544
Defined Atom Stereocenter Count
0
InChi Key
VCKUSRYTPJJLNI-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H25N5O4/c1-26-15-10-12-13(11-16(15)27-2)21-19(22-17(12)20)24-7-5-23(6-8-24)18(25)14-4-3-9-28-14/h10-11,14H,3-9H2,1-2H3,(H2,20,21,22)
Chemical Name
[4-(4-amino-6,7-dimethoxyquinazolin-2-yl)piperazin-1-yl]-(oxolan-2-yl)methanone
Synonyms
Vasocard; terazosin; 63590-64-7; Terazosine; Fosfomic; Blavin; Flumarc; Vasomet; Terazosina; Hytrin
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5811 mL 12.9056 mL 25.8111 mL
5 mM 0.5162 mL 2.5811 mL 5.1622 mL
10 mM 0.2581 mL 1.2906 mL 2.5811 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Target Engagement of Terazosin in Healthy Adults
CTID: NCT04551040
Phase: Phase 1
Status: Active, not recruiting
Date: 2023-12-06
Terazosin and Parkinson's Disease Extension Study
CTID: NCT05109364
Phase: Phase 2
Status: Recruiting
Date: 2023-10-06
Terazosin Effect on Cardiac Changes in Early Parkinson's Disease
CTID: NCT04386317
Phase: Phase 2
Status: Recruiting Date: 2023-10-06
Motor Function Efficacy of Pharmacological Treatments Targeting Energy Metabolism, in Parkinson's Patients
CTID: NCT05855577
Phase: Phase 4
Status: Not yet recruiting
Date: 2023-09-22
A Pilot Study of Terazosin for Parkinson's Disease
CTID: NCT03905811
Phase: Phase 1/Phase 2
Status: Completed
Date: 2022-05-16
Contact Us