yingweiwo

Thiamet G

Alias: Thiamet-G;Thiamet G
Cat No.:V1948 Purity: = 99.68%
Thiamet G is a novel potent, and selective O-GlcNAcase (OGA) inhibitor with Ki of 21 nM, it displayed 37,000-fold selectivity over human lysosomal–hexosaminidase.
Thiamet G
Thiamet G Chemical Structure CAS No.: 1009816-48-1
Product category: OGA
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
10 mM * 1 mL in DMSO
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: = 99.68%

Purity: ≥98%

Product Description

Thiamet G is a novel potent, and selective O-GlcNAcase (OGA) inhibitor with Ki of 21 nM, it displayed 37,000-fold selectivity over human lysosomal–hexosaminidase. Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease. Thiamet G was extremely stable in aqueous solution. In nerve growth factor (NGF)-differentiated PC-12 cells, thiamet G significantly increased cellular O-GlcNAc levels with EC50 value of 30 nM in a dose dependent way.

Biological Activity I Assay Protocols (From Reference)
Targets
Human OGA (Ki = 20 nM)
ln Vitro
In ATDC5 cells, thiamet G (1 μM) dramatically enhances the accumulation of O-GlcNAcylated protein. The buildup of O-GlcNAc brought on by thiamet G also significantly increased these MMPs' activity. JNK, ERK, and p38 are all phosphorylated when exposed to 1 μM of thiamet G, but not Akt[2]. Cell viability is not greatly affected by thiamet G (0.1–10 μM). Microtubule dynamics are changed and tau phosphorylation is decreased by thiamet G [3].
ln Vivo
At 500 mg/kg/d, thiamet G decreases neurodegeneration and raises tau and global O-GlcNAc. In this transgenic model, thiamet G treatment prevented tau-driven neurodegeneration and increased motor neurons by 1.4 times. Therefore, Thiamet G treatment was ineffective in mice devoid of the P301L transgene, suggesting that Thiamet G treatment is only effective in preventing neurodegeneration and weight loss when the P301L transgene is present. O-GlcNAc is elevated in the brain and spinal cord tissue of Thiamet G-treated mice [1]. O-GlcNAc levels in the brain, liver, and knee joints of C57BL/6 mice are dose-dependently increased by thiamet G (20 mg/kg, i.p.) [2].
Enzyme Assay
All enzymatic assays are performed in triplicate at 37°C using 4-methylumbelliferyl N-acetyl-β-d-glucosaminide dehydrate as substrate. 1 nM of purified OGA is incubated with the compounds for 5 min, and then 0.2 mM of the substrate is added. The liberation of 4-methylumbellifery is monitored by kinetic reading at excitation/emission 355/460 nm using a Tecan M200 plate in a mode of 60 s/cycle and 15 cycles in total.[3]
Cell Assay
Jurkat cells are seeded at 6000 cells/well in a 96-well plate, and 12 h later, cells are treated with compounds for the indicated time. Cell viability is determined by XTT assay [3].
Animal Protocol
For the Thiamet G dose dependence study, six 23-day-old male C57BL/6 mice receive single intraperitoneal injections of either 0, 10, 20, 100, 200, or 500 mg/kg of Thiamet G dissolved in PBS and then are euthanized 8 h later to evaluate the O-GlcNAc levels in different tissues (brain, liver, muscle, and knee). The time of sacrifice is chosen on the basis of previously published data on Thiamet G in rodents, which demonstrates that the peak level of O-GlcNAc proteins following administration of the drug is achieved after 8-10 h. Tissues are collected immediately after sacrifice, flash-frozen in liquid nitrogen, and stored at −80°C until required for use [2].
Dissolved in water; Healthy Sprague-Dawley rats.; p.o. or i.v.
References

[1]. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol. 2012 Feb 26;8(4):393-9.

[2]. The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. J Biol Chem. 2012 Sep 28;287(40):33615-28.

[3]. Thiamet-G-mediated inhibition of O-GlcNAcase sensitizes human leukemia cells to microtubule-stabilizing agent NSC 125973. Biochem Biophys Res Commun. 2014 Oct 24;453(3):392-7.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H16N2O4S
Molecular Weight
248.3
Exact Mass
248.083
Elemental Analysis
C, 43.54; H, 6.50; N, 11.28; O, 25.77; S, 12.91
CAS #
1009816-48-1
Related CAS #
1009816-48-1
Appearance
White to light yellow solid
Density
1.8±0.1 g/cm3
Boiling Point
483.2±55.0 °C at 760 mmHg
Flash Point
246.0±31.5 °C
Vapour Pressure
0.0±2.8 mmHg at 25°C
Index of Refraction
1.729
LogP
-0.09
SMILES
S1/C(=N\C([H])([H])C([H])([H])[H])/N([H])C2([H])[C@]1([H])OC([H])(C([H])([H])O[H])[C@]([H])(C2([H])O[H])O[H]
InChi Key
PPAIMZHKIXDJRN-FMDGEEDCSA-N
InChi Code
InChI=1S/C9H16N2O4S/c1-2-10-9-11-5-7(14)6(13)4(3-12)15-8(5)16-9/h4-8,12-14H,2-3H2,1H3,(H,10,11)/t4-,5-,6-,7-,8-/m1/s1
Chemical Name
(3aR,5R,6S,7R,7aR)-2-(Ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-5H-pyrano[3,2-d]thiazole-6,7-diol
Synonyms
Thiamet-G;Thiamet G
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:50 mg/mL (201.4 mM)
Water:50 mg/mL (201.4 mM)
Ethanol:12 mg/mL (48.3 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (8.38 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (8.38 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (8.38 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: Saline: 30 mg/mL

Solubility in Formulation 5: 50 mg/mL (201.37 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.0274 mL 20.1369 mL 40.2739 mL
5 mM 0.8055 mL 4.0274 mL 8.0548 mL
10 mM 0.4027 mL 2.0137 mL 4.0274 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Thiamet G

    J Biol Chem. 2012 Sep 28;287(40):33615-28.
  • Thiamet G

    J Biol Chem. 2012 Sep 28;287(40):33615-28.
  • Thiamet G

Contact Us