yingweiwo

THZ2

Alias: THZ-2; THZ 2; THZ2
Cat No.:V5014 Purity: ≥98%
THZ2, aTHZ1 analog, is a novel, potent and selective CDK7 inhibitor with an IC50 of 13.9 nM.
THZ2
THZ2 Chemical Structure CAS No.: 1604810-84-5
Product category: CDK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

THZ2, a THZ1 analog, is a novel, potent and selective CDK7 inhibitor with an IC50 of 13.9 nM. THZ2 can overcome THZ1's instability problem in vivo, and it may be used to treat triple-negative breast cancer (TNBC).

Biological Activity I Assay Protocols (From Reference)
Targets
CDK7 (IC50 = 13.9 nM); CDK1 (IC50 = 96.9 nM); CDK2 (IC50 = 222 nM); CDK5 (IC50 = 134 nM); CDK9 (IC50 = 194 nM); CDK8 (IC50 = 6830 nM)
ln Vitro
THZ2 potently suppresses triple-negative breast cancer cell growth while specifically targeting CDK7, leaving ER/PR+ cells unaffected. THZ2 effectively inhibits the clonogenic growth of TNBC cells at low nanomolar doses, with an IC50 of about 10 nM. In triple-negative breast cancer cells, but not in ER/PR+ breast cancer cells or normal human cells, THZ2 causes apoptotic cell death[1].
ln Vivo
THZ2 (10 mg/Kg) exhibits anti-tumor activity and significantly slows the growth rate of tumors in mice. Tumor tissues isolated from mice treated with THZ2 exhibited decreased proliferation and increased apoptosis in comparison to vehicle-treated tumors, as demonstrated by immunostaining against Ki67 and cleaved Caspase 3, respectively. Body weight is decreased by THZ2 in NOD-SCID mice, indicating that THZ2 may not be as well tolerated in this specific strain of mice[1].
Cell Assay
In the 96-well plate assay, cells are plated at a density of 2000 cells per well, and the following day, they are treated with different concentrations of THZ1 or THZ2. Cells are fixed and stained with crystal violet following a 48-hour incubation period. The staining is then removed by adding 10% acetic acid to each well, and the absorbance is measured at 590 nm using 750 nm as a reference.
Animal Protocol
Mice: A single 400 rad dose of γ-irradiation is given to naked mice (CrTac:NCr-Foxn1nu) six hours prior to cell transplantation. The fourth pair of mice's mammary fat pads are injected with 100 μL of breast cancer cells per site after the cells are extracted and resuscitated in 40% Matrigel-Basement Membrane Matrix, LDEV-free. Manual calipers are used to measure tumors in two dimensions. The formula for calculating tumor volume is V=0.5× length× width× width. THZ2 (3 mg/mL, prepared in vehicle solutions) at a dose of 10 mg/kg intraperitoneally twice daily is administered to animals with established tumors (mean tumor volume of approximately 200 mm3), which are randomly divided into two groups and treated with vehicle (10% DMSO in D5W, 5% dextrose in water). Tumor volume is measured every two to three days. After being harvested, tumors are cut in half. One half is immediately snap frozen in liquid nitrogen for immunoblotting, and the other half is fixed in formalin for one night before being examined histopathologically and then in 70% ethanol.
References

[1]. CDK7-Dependent Transcriptional Addiction in Triple-Negative Breast Cancer. Cell. 2015 Sep 24;163(1):174-186.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C31H28CLN7O2
Molecular Weight
566.0527
Exact Mass
565.20
Elemental Analysis
C, 65.78; H, 4.99; Cl, 6.26; N, 17.32; O, 5.65
CAS #
1604810-84-5
Related CAS #
1604810-84-5
Appearance
Solid powder
SMILES
CN(C)C/C=C/C(=O)NC1=CC=CC(=C1)C(=O)NC2=CC=CC(=C2)NC3=NC=C(C(=N3)C4=CNC5=CC=CC=C54)Cl
InChi Key
FONRCZUZCHXWBD-VGOFMYFVSA-N
InChi Code
InChI=1S/C31H28ClN7O2/c1-39(2)15-7-14-28(40)35-21-9-5-8-20(16-21)30(41)36-22-10-6-11-23(17-22)37-31-34-19-26(32)29(38-31)25-18-33-27-13-4-3-12-24(25)27/h3-14,16-19,33H,15H2,1-2H3,(H,35,40)(H,36,41)(H,34,37,38)/b14-7+
Chemical Name
N-[3-[[5-chloro-4-(1H-indol-3-yl)pyrimidin-2-yl]amino]phenyl]-3-[[(E)-4-(dimethylamino)but-2-enoyl]amino]benzamide
Synonyms
THZ-2; THZ 2; THZ2
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (~176.7 mM)
Ethanol: ˂1 mg/mL (NaN mM)
Water: ˂1 mg/mL (NaN mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.17 mg/mL (3.83 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.17 mg/mL (3.83 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7666 mL 8.8331 mL 17.6663 mL
5 mM 0.3533 mL 1.7666 mL 3.5333 mL
10 mM 0.1767 mL 0.8833 mL 1.7666 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • THZ2


    CDK7 Inhibition Selectively Targets TNBC Cells.2015 Sep 24;163(1):174-86.

  • THZ2


    An Analog of THZ1, and the Effect of CDK7 inhibition on the Growth of Triple-Negative Breast Tumors.2015 Sep 24;163(1):174-86.

  • THZ2


    Loss of CDK7 Impairs TNBC Cell Growth and Tumorigenesis.2015 Sep 24;163(1):174-86.

Contact Us