yingweiwo

Ticagrelor (AZD6140)

Alias: AZD 6140; AZD 6140; AR-C 126532XX; AR-C-126532XX; AZD-6140; AZD6140; AR-C126532XX; Ticagrelor; brand name: Brilinta; Brilique; Possia
Cat No.:V1303 Purity: ≥98%
Ticagrelor (formerly AZD-6140; AR-C 126532XX; AZD6140;AR-C126532XX; Trade name: Brilinta; Brilique; Possia) is the first reversibly binding, potent and orally bioactiveP2Y12 receptor antagonist used as an antiplatelet and anticoagulant.
Ticagrelor (AZD6140)
Ticagrelor (AZD6140) Chemical Structure CAS No.: 274693-27-5
Product category: P2 Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
2g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Ticagrelor (formerly AZD-6140; AR-C 126532XX; AZD6140; AR-C126532XX; Trade name: Brilinta; Brilique; Possia) is the first reversibly binding, potent and orally bioactive P2Y12 receptor antagonist used as an antiplatelet and anticoagulant. It inhibits P2Y12 receptor with a Ki of 2 NM. Ticagrelor was approved in 2011 by FDA as an antiplatelet drug for the prevention of stroke, heart attack and other events in people with acute coronary syndrome, meaning problems with blood supply in the coronary arteries. Like the thienopyridines prasugrel, clopidogrel and ticlopidine, ticagrelor blocks adenosine diphosphate (ADP) receptors of subtype P2Y12. In contrast to the other antiplatelet drugs, ticagrelor has a binding site different from ADP, making it an allosteric antagonist, and the blockage is reversible.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Compared to other P2Y12R antagonists, ticagrelor encourages a higher suppression of adenosine 5′-diphosphate (ADP)-induced Ca2+ release in ischemic platelets. Beyond its antagonistic effects on P2Y12R, ticagrelor also inhibits the equilibrative nucleoside transporter 1 (ENT1) on platelets, which causes extracellular adenosine to accumulate and Gs-coupled adenosine A2A receptors to become activated[1]. When compared to mice treated with saline, B16-F10 cells show less interaction with platelets from mice treated with ticagrelor[2].
ln Vivo
Mice given a therapeutic dose of ticagrelor (10 mg/kg) in B16-F10 melanoma intravenous and intrasplenic metastatic models show significant decreases in lung (84%) and liver (86%) metastases. In addition, animals treated with ticagrelor have higher survival rates than those treated with saline. Similar results are seen in a 4T1 breast cancer model, where ticagrelor therapy reduces lung (55%) and bone marrow (87%) metastases[2]. Titicagrelor (1–10 mg/kg) administered orally once has a dose-related inhibitory impact on platelet aggregation. When ticagrelor is administered at its maximum dosage of 10 mg/kg, platelet aggregation is significantly inhibited beginning one hour after medication and reaches its peak four hours later[3].
Animal Protocol
Mice: Female BALB/c mice are inoculated subcutaneously in the fourth mammary pad with 4T1 breast cancer cells. Once a tumor is palpable, mice receive daily injections of PBS or ticagrelor (10 mg/kg). One week later, mice undergo primary tumor resection. At 28 days mice are sacrificed and lungs, femurs and tibiae harvested. Dissociated cells from lung and bone marrow are plated in medium containing 60 μM 6-thioguanine. After 14 days, culture plates are fixed with methanol and stained with 0.03% methylene blue to enumerate metastatic 4T1 colonies.
Mice bearing B16-F10 melanoma tumor
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Ticagrelor is 36% orally bioavailable. A single 200mg oral dose of ticagrelor reaches a Cmax of 923ng/mL, with a Tmax of 1.5 hours and an AUC of 6675ng\*h/mL. The active metabolite of ticagrelor reaches a Cmax of 264ng/mL, with a Tmax of 3.0 hours and an AUC of 2538ng\*h/mL.
A radiolabelled dose of ticagrelor is 57.8% recovered in feces and 26.5% recovered in urine. Less than 1% of the dose is recovered as the unmetabolized parent drug. The active metabolite AC-C124910XX makes up 21.7% of the recovery in the feces. The metabolite AR-C133913XX makes up 9.2% of the recovery in the urine and 2.7% of the recovery in the feces. Other minor metabolites are predominantly recovered in the urine.
The steady state volume of distribution of ticagrelor is 88 L.
The renal clearance of ticagrelor is 0.00584L/h.
The drug is metabolized principally by cytochrome P-450 (CYP) isoenzyme 3A4 to an active metabolite that has similar antiplatelet activity as the parent drug.Plasma concentrations of ticagrelor and its active metabolite increase in a dose-dependent manner with peak concentrations achieved within approximately 1.5 and 2.5 hours, respectively. Ticagrelor is primarily eliminated in the feces and to a lesser extent in urine; less than 1% of a dose is recovered in urine as the parent drug and active metabolite. ... Both ticagrelor and its active metabolite are extensively (more than 99%) bound to human plasma proteins. Administration with a high-fat meal increases systemic exposure of ticagrelor by 21% and decreases peak plasma concentrations of the active metabolite by 22%, but has no effect on peak plasma concentrations of ticagrelor or on systemic exposure to the active metabolite.
Ticagrelor is rapidly absorbed following oral administration.
The primary route of ticagrelor elimination is hepatic metabolism. When radiolabeled ticagrelor is administered, the mean recovery of radioactivity is approximately 84% (58% in feces, 26% in urine). Recoveries of ticagrelor and the active metabolite in urine were both less than 1% of the dose. The primary route of elimination for the major metabolite of ticagrelor is most likely to be biliary secretion.
/MILK/ It is not known whether ticagrelor or its active metabolites are excreted in human milk. Ticagrelor is excreted in rat milk.
For more Absorption, Distribution and Excretion (Complete) data for Ticagrelor (6 total), please visit the HSDB record page.
Metabolism / Metabolites
The complete structure of all ticagrelor metabolites are not well defined. Ticagrelor can be dealkylated at postition 5 of the cyclopentane ring to form the active AR-C124910XX. AR-C124910XX's cyclopentane ring can be further glucuronidated or the alkyl chain attached to the sulfur can be hydroxylated. Ticagrelor can also be glucuronidated or hydroxylated. Ticagrelor can also be N-dealkylated to form AR-C133913XX, which is further glucuronidated or hydroxylated.
CYP3A4 is the major enzyme responsible for ticagrelor metabolism and the formation of its major active metabolite. Ticagrelor and its major active metabolite are weak P-glycoprotein substrates and inhibitors. The systemic exposure to the active metabolite is approximately 30-40% of the exposure of ticagrelor.
The drug is metabolized principally by cytochrome P-450 (CYP) isoenzyme 3A4 to an active metabolite that has similar antiplatelet activity as the parent drug.
Ticagrelor is a reversibly binding oral P2Y(12) receptor antagonist in development for the prevention of thrombotic events in patients with acute coronary syndromes. The pharmacokinetics, metabolism, and excretion of ticagrelor were investigated over 168 hr in six healthy male subjects receiving a single oral suspension dose of 200 mg of (14)C-ticagrelor. ... Major circulating components in the plasma and feces were identified as ticagrelor and AR-C124910XX, whereas in urine the major components were metabolite M5 (AR-C133913XX) and its glucuronide conjugate M4. Levels of unchanged ticagrelor and AR-C124910XX were <0.05% in the urine, indicating that renal clearance of ticagrelor and AR-C124910XX is of minor importance. Interindividual variability was small in both urine and fecal extracts with only small quantitative differences. All 10 of the metabolites were fully or partially characterized and a full biotransformation pathway was proposed for ticagrelor, in which oxidative loss of the hydroxyethyl side chain from ticagrelor forms AR-C124910XX and a second oxidative pathway leads to N-dealkylation of ticagrelor, forming AR-C133913XX.
Biological Half-Life
Ticagrelor has a plasma half life of approximately 8 hours, while the active metabolite has a plasma half life of approximately 12 hours.
The mean terminal half-lives of ticagrelor and its active metabolite reportedly are about 7 and 9 hours, respectively.
Ticagrelor is a reversibly binding oral P2Y(12) receptor antagonist in development for the prevention of thrombotic events in patients with acute coronary syndromes. The pharmacokinetics, metabolism, and excretion of ticagrelor were investigated over 168 hr in six healthy male subjects receiving a single oral suspension dose of 200 mg of (14)C-ticagrelor. In most subjects, radioactivity was undetectable in plasma after 20 hr and whole blood after 12 hr (half-life values of 6.3 and 4.6 hr, respectively).
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Ticagrelor is a crystalline powder. As the drug Brilinta, it is indicated to reduce the rate of cardiovascular death, myocardial infarction, and stroke in patients with acute coronary syndrome (ACS) or a history of myocardial infarction (MI). Brilinta also reduces the rate of stent thrombosis in patients who have been stented for treatment of ACS. HUMAN EXPOSURE AND TOXICITY: Symptoms of overdose may include bleeding, gastrointestinal effects (nausea, vomiting and diarrhea) and ventricular pauses. Blood loss is the predominant risk. ANIMAL STUDIES: The acute toxicity of the drug is considered low. The results of single dose studies in mice and rats showed that ticagrelor was well tolerated when given orally by gavage at doses approximately 550 times the recommended human daily dose on a mg/kg basis. Repeat-dose studies were conducted in mice, rats and marmosets. Indications of subclinical bleeding were observed across species. Increased liver weight at high doses occurred in rodents. Ticagrelor had no effects on parturition or postnatal development in rats at doses up to 60 mg/kg/day (4.6 times the human therapeutic exposure), but did cause maternal and developmental toxicity in pups at 180 mg/kg. Ticagrelor given during the period of organogenesis had no effect on fetal development at oral doses up to 100 mg/kg/day in rats (5.1 times the human therapeutic exposure) and up to 42 mg/kg/day in rabbits (equivalent to the human therapeutic exposure). Ticagrelor and the active metabolite AR-C124910XX did not demonstrate any genotoxic potential in bacterial in vitro test, in vitro mouse lymphoma L5178Y TK+/- 3.7.2C cell, and in vivo rat bone marrow micronucleus assays.
Hepatotoxicity
In several large clinical trials, ticagrelor was not associated with serum enzyme elevations during therapy and no instances of clinically apparent liver injury were reported. While there have been isolated reports of transient and mild serum enzyme elevations during ticagrelor therapy, these have been short lived and asymptomatic. In addition, since marketing and release, there have been no reports of isolated clinically apparent liver injury or jaundice associated with ticagrelor therapy and hepatotoxicity is not mentioned in the product label. On the other hand, there have been several reports of jaundice and liver injury associated with rhabdomyolysis and with thrombotic thrombocytopenic purpura that represented secondary effects of these severe adverse events. Thus, significant liver injury due to ticagrelor occurs but has occurred largely in association with other life-threatening complications.
Likelihood score: D (possible rare cause of liver injury due to complications of severe allergic reactions or drug-drug interactions).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No published information is available on the use of ticagrelor during breastfeeding. Because ticagrelor and its active metabolite are more than 99% bound to plasma proteins, the amount in milk is likely to be low. However, an alternate drug may be preferred, especially while nursing a newborn or preterm infant. If it is used by a nursing mother, monitor the infant for bruising and bleeding.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Ticagrelor and its active metabolite ate >99% protein bound in plasma, particularly albumin.
Interactions
Concomitant administration of ticagrelor and digoxin did not substantially affect pharmacokinetics of digoxin; therefore, these drugs may be used concomitantly without dosage adjustments. However, because of the possibility of increased digoxin concentrations as a result of P-glycoprotein inhibition, serum digoxin concentrations should be monitored during initiation of and following any change in ticagrelor therapy.
When ticagrelor is used in conjunction with aspirin maintenance dosages exceeding 100 mg daily, efficacy of ticagrelor may be reduced.
Ticagrelor is a substrate and weak inhibitor of the P-glycoprotein transport system. Increased serum concentrations of P-glycoprotein substrates (e.g., digoxin) are possible when these drugs are used concomitantly with ticagrelor; appropriate laboratory and/or clinical monitoring is recommended.
Concomitant administration of ticagrelor and rifampin 600 mg once daily substantially decreased peak plasma concentrations of and systemic exposure to ticagrelor. Concomitant use of ticagrelor and rifampin should therefore be avoided.
For more Interactions (Complete) data for Ticagrelor (9 total), please visit the HSDB record page.
References

[1]. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor. Blood. 2016 Dec 8;128(23):2717-2728.

[2]. The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. Int J Cancer. 2015 Jan 1;136(1):234-40.

[3]. A comparison of the pharmacological profiles of prasugrel and ticagrelor assessed by platelet aggregation, thrombus formation and haemostasis in rats. Br J Pharmacol. 2013 May;169(1):82-9.

Additional Infomation
Therapeutic Uses
Purinergic P2Y Receptor Antagonists
/CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Ticagrelor is included in the database.
Brilinta is indicated to reduce the rate of cardiovascular death, myocardial infarction, and stroke in patients with acute coronary syndrome (ACS) or a history of myocardial infarction (MI). For at least the first 12 months following ACS, it is superior to clopidogrel. /Included in US product label/
Brilinta also reduces the rate of stent thrombosis in patients who have been stented for treatment of acute coronary syndrome (ACS). /Included in US product label/
Drug Warnings
/BOXED WARNING/ BLEEDING RISK. Brilinta, like other antiplatelet agents, can cause significant, sometimes fatal bleeding. Do not use Brilinta in patients with active pathological bleeding or a history of intracranial hemorrhage. Do not start Brilinta in patients undergoing urgent coronary artery bypass graft surgery (CABG). If possible, manage bleeding without discontinuing Brilinta. Stopping Brilinta increases the risk of subsequent cardiovascular events
/BOXED WARNING/ ASPIRIN DOSE AND BRILINTA EFFECTIVENESS. Maintenance doses of aspirin above 100 mg reduce the effectiveness of Brilinta and should be avoided.
In general, treatment with ticagrelor should not be discontinued prematurely because this increases the risk of cardiovascular events. Premature discontinuance of antiplatelet therapy (e.g., P2Y12 adenosine diphosphate (ADP)-receptor antagonists, aspirin) in patients with coronary artery stents has been associated with an increased risk of ischemic cardiovascular events (e.g., stent thrombosis, myocardial infarction (MI), death). If temporary discontinuance of ticagrelor is necessary such as prior to elective surgery or for management of bleeding, the drug should be restarted as soon as possible. Patients should be advised to never stop taking ticagrelor without first consulting the prescribing clinician, even if instructed by another clinician (e.g., dentist) to stop such therapy. Prior to scheduling an invasive procedure, patients should inform clinicians (including dentists) that they are currently taking ticagrelor and clinicians performing the invasive procedure should consult with the prescribing clinician before discontinuing such therapy.
Bradyarrhythmias, including ventricular pauses, have occurred in patients receiving ticagrelor. In the The Study of Platelet Inhibition and Patient Outcomes (PLATO) study, Holter monitor-detected ventricular pauses of at least 3 seconds were reported more frequently during the first week of therapy in patients receiving ticagrelor than in those receiving clopidogrel (5.8 versus 3.6%, respectively). There was no difference in the overall risk of clinically important bradycardic effects (e.g., syncope, need for pacemaker insertion) between the treatment groups. Ventricular pauses were mostly asymptomatic and attributed to sinoatrial nodal suppression. Patients with a baseline increased risk of bradycardia (e.g., those with sick sinus syndrome, second- or third-degree AV block, syncope due to bradycardia without a pacemaker) were excluded from the PLATO study; therefore, some clinicians recommend that ticagrelor be used with caution in such patients.
For more Drug Warnings (Complete) data for Ticagrelor (15 total), please visit the HSDB record page.
Pharmacodynamics
Ticagrelor is a P2Y12 receptor antagonist that inhibits the formation of thromboses to reduce the risk of myocardial infarction and ischemic stroke. It has a moderate duration of action as it is given twice daily, and a wide therapeutic index as high single doses are well tolerated. Patients should be counselled regarding the risk of bleeding, dyspnea, and bradyarrhythmias.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H28F2N6O4S
Molecular Weight
522.57
Exact Mass
522.186
CAS #
274693-27-5
Related CAS #
274693-27-5
PubChem CID
9871419
Appearance
Off-white to yellow solid powder
Density
1.7±0.1 g/cm3
Boiling Point
777.6±70.0 °C at 760 mmHg
Flash Point
424.0±35.7 °C
Vapour Pressure
0.0±2.8 mmHg at 25°C
Index of Refraction
1.744
LogP
1.9
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
10
Heavy Atom Count
36
Complexity
736
Defined Atom Stereocenter Count
6
SMILES
CCCSC1=NC(=C2C(=N1)N(N=N2)[C@@H]3C[C@@H]([C@H]([C@H]3O)O)OCCO)N[C@@H]4C[C@H]4C5=CC(=C(C=C5)F)F
InChi Key
OEKWJQXRCDYSHL-FNOIDJSQSA-N
InChi Code
InChI=1S/C23H28F2N6O4S/c1-2-7-36-23-27-21(26-15-9-12(15)11-3-4-13(24)14(25)8-11)18-22(28-23)31(30-29-18)16-10-17(35-6-5-32)20(34)19(16)33/h3-4,8,12,15-17,19-20,32-34H,2,5-7,9-10H2,1H3,(H,26,27,28)/t12-,15+,16+,17-,19-,20+/m0/s1
Chemical Name
(1S,2S,3R,5S)-3-[7-[(1R,2S)-2-(3,4-Difluorophenyl)cyclopropylamino]-5-(propylthio)- 3H-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol
Synonyms
AZD 6140; AZD 6140; AR-C 126532XX; AR-C-126532XX; AZD-6140; AZD6140; AR-C126532XX; Ticagrelor; brand name: Brilinta; Brilique; Possia
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage.  (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 105 mg/mL (200.9 mM)
Water:<1 mg/mL
Ethanol: 53 mg/mL (101.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2 mg/mL (3.83 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2 mg/mL (3.83 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2 mg/mL (3.83 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9136 mL 9.5681 mL 19.1362 mL
5 mM 0.3827 mL 1.9136 mL 3.8272 mL
10 mM 0.1914 mL 0.9568 mL 1.9136 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us