Size | Price | Stock | Qty |
---|---|---|---|
1g |
|
||
5g |
|
||
Other Sizes |
|
Purity: =99.85%
ADME/Pharmacokinetics |
Metabolism / Metabolites
Enteric bacterial and hepatic azoreductase enzymes are capable of reducing azo dyes to yield the constituent aromatic amines. Azo dyes based on benzidine and benzidine congeners have received particular attention because of their widespread use and the known carcinogenicity of benzidine to humans. Azo dyes based on beta-diketone coupling components exist preferentially as the tautomeric hydrazones. A series of hydrazone dyes based on benzidine and benzidine congeners was prepared and characterized by NMR and UV-visible spectroscopy. These dyes were tested for mutagenicity using a modified Ames assay and, unlike the true azo dyes, showed no significant mutagenic activity. The hydrazone dyes were resistant to enzymatic reduction by FMN-supplemented hamster-liver post-mitochondrial supernatant (S-9); under identical conditions, azo dyes such as trypan blue were rapidly reduced. Benzidine and several derivatives are activated to mutagenic species in an H2O2-dependent Ames test system. Optical and electron paramagnetic resonance (EPR) spectroscopy are employed in studies of the H2O2-dependent oxidation of benzidine and 3,5,3',5'-tetramethylbenzidine (TMB) catalyzed by intact bacteria, and provide direct evidence for peroxidase activity in Salmonella typhimurium. The acetylase-proficient Ames tester strain TA98 and its acetylase-deficient derivative TA98/1,8-DNP6 are equally responsive to H2O2-dependent mutagenicity; enzymatic acetylation appears not to be involved in activation of benzidine, in this system. The H2O2-dependent mutagenicity of benzidine and oxidation of TMB are observed when the assays are carried out in acetate buffer (pH 5.5), but not in 2-[N-morpholino]ethane sulfonic acid (MES) buffer, at the same pH. This difference is interpreted in terms of the effects of these buffers on the intracellular pH of the bacteria. The H2O2-dependent mutagenicity of several benzidine congeners is also described. Dichlorobenzidine can be peroxidatively activated in Salmonella typhimurium Ames tester strains. Mutagenicity is observed when an S. typhimurium strain which is sensitive to frame-shift mutagens is incubated with dichlorobenzidine and hydrogen peroxide. In this paper, we show that the bacterial enzyme, hydroperoxidase I, is responsible for much of this activation. We constructed isogenic tester strains which lack hydroperoxidase I or II, due to Tn10 insertions in the structural genes encoding these proteins. Hydrogen peroxide-dependent mutagenicity of dichlorobenzidine was measured in each strain. A tester strain lacking hydroperoxidase I activity was much less sensitive than was the parent strain. When hydroperoxidase I activity was restored in this strain, via a plasmid-borne copy of the gene encoding the Escherichia coli protein, sensitivity to peroxide-dependent dichlorobenzidine mutagenicity was enhanced. An accumulation of insoluble, finely granular material has been observed under the pigmented surface of Xenopus eggs by a specialized "dry fracture" technique and scanning electron microscopy. Cortical granules and pigment granules can be recognized with the techniques and can be seen to be embedded in the material. Thin sections show that the region also contains mitochondria and membranous vesicles or reticula. Yolk platelets are largely excluded from the heaviest accumulations of the material. The substance is most dense just under the cortex and grades off gradually into the more diffuse, yolk-containing network of the endoplasm. The accumulation of material is much thicker in the animal hemisphere of the egg than in the vegetal hemisphere, and the pigment embedded in it defines the pigmented area of the animal hemisphere. In the pigmented area the material excludes yolk for a thickness of 3-7+ microns from the surface. In the vegetal hemisphere there is no such accumulation and yolk platelets can be found almost touching the plasmalemma. Cortical contractions have been experimentally induced in eggs. Their relative strength correlates with the relative thickness of the finely granular, subcortical material. During contraction the material accumulates to much greater thicknesses, excluding yolk from thicknesses of 15-30+ microns from the surface. The contracting entity is, or is in, the finely granular material. Injection of cytochalasins into the eggs inhibits cleavage furrow operation but does not inhibit the induced cortical contractions. The thus do not seem to be dependent on actin microfilamentogenesis as is the operation of the contractile ring of the cleavage furrow. The differential sensitivity to cytochalasins of the contractile ring and the system responding in the induced cortical contractions, suggests a two-component system for cortical contractions in the egg. A model is presented which accommodates the available data. For more Metabolism/Metabolites (Complete) data for 3,3',5,5'-TETRAMETHYLBENZIDINE (6 total), please visit the HSDB record page. |
---|---|
Toxicity/Toxicokinetics |
Non-Human Toxicity Values
LD50 Mouse ip 135 mg/kg |
Additional Infomation |
3,3',5,5'-tetramethylbenzidine appears as pale yellow crystals or off-white powder. (NTP, 1992)
Mechanism of Action Histological analysis of surgically removed adrenal masses often fails to differentiate between benign and malignant tumors. In normal cells, the telomeric ends of the chromosomes are shortened with each cell division, leading to chromosome destabilization and cellular senescence after a critical number of cell cycles. In tumor cells, telomere shortening is prevented by a specific DNA polymerase, called telomerase. In an effort to clarify the role of telomerase in the pathogenesis of adrenal tumors, and to test whether its activity could serve as marker of malignancy, we measured telomerase activity in 41 human adrenal tissue samples that were classified both by the clinical course and by histological examination. Telomerase activity was determined by TRAP ELISA and expressed as high (>50% of positive control telomerase activity), medium (31-50%), low (11-30%), very low (< or = 10%), or absent (0%). The 8 normal adrenal tissue samples showed very low levels of telomerase activity. Mean telomerase activity also very low in 3/3 incidentalomas, 6/6 Cushing adenomas, 6/6 Conn adenomas, 7/7 adrenocortical carcinomas, 8/8 benign pheochromocytomas, and 2/3 malignant pheochromocytomas. In contrast, one malignant pheochromocytoma showed high telomerase activity. These data indicate that telomerase activity may not be a suitable marker for malignancy in the adrenal gland. Our results also challenge the current dogma of close correlation between cell dedifferentiation and telomerase activity. Earlier investigations of the oxidation of 3,5,3',5'-tetramethylbenzidine (TMB) using horseradish peroxidase and prostaglandin H-synthase have shown the formation of a cation free radical of TMB in equilibrium with a charge-transfer complex, consistent with either a two- or a one-electron initial oxidation. In this work, we exploited the distinct spectroscopic properties of myeloperoxidase and its oxidized intermediates, compounds I and II, to establish two successive one-electron oxidations of TMB. By employing stopped-flow techniques under transient-state and steady-state conditions, we also determined the rate constants for the elementary steps of the myeloperoxidase-catalyzed oxidation of TMB at pH 5.4 and 20 degrees C. The second-order rate constant for compound I formation from the reaction of native enzyme with H2O2 is 2.6 x 10(7) M-1 s-1. Compound I undergoes a one-electron reduction to compound II in the presence of TMB, and the rate constant for this reaction was determined to be (3.6 +/- 0.1) x 10(6) M-1 s-1. The spectral scans show that compound II accumulates in the steady state. The rate constant for compound II reduction to native enzyme by TMB obtained under steady-state conditions is (9.4 +/- 0.6) x 10(5) M-1 s-1. The results are applied to a new, more accurate assay for myeloperoxidase based upon the formation of the charge-transfer complex between TMB and its diimine final product. |
Molecular Formula |
C16H20N2
|
---|---|
Molecular Weight |
240.3434
|
Exact Mass |
240.162
|
CAS # |
54827-17-7
|
Related CAS # |
TMB dihydrochloride;64285-73-0;TMB monosulfate;54827-18-8;TMB dihydrochloride hydrate;312693-82-6
|
PubChem CID |
41206
|
Appearance |
White to light yellow solid powder
|
Density |
1.1±0.1 g/cm3
|
Boiling Point |
368.6±37.0 °C at 760 mmHg
|
Melting Point |
168-171 °C(lit.)
|
Flash Point |
210.8±26.0 °C
|
Vapour Pressure |
0.0±0.8 mmHg at 25°C
|
Index of Refraction |
1.618
|
LogP |
3.4
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
18
|
Complexity |
226
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
UAIUNKRWKOVEES-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H20N2/c1-9-5-13(6-10(2)15(9)17)14-7-11(3)16(18)12(4)8-14/h5-8H,17-18H2,1-4H3
|
Chemical Name |
4-(4-amino-3,5-dimethylphenyl)-2,6-dimethylaniline
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~25 mg/mL (~104.02 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.1608 mL | 20.8039 mL | 41.6077 mL | |
5 mM | 0.8322 mL | 4.1608 mL | 8.3215 mL | |
10 mM | 0.4161 mL | 2.0804 mL | 4.1608 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.