yingweiwo

Tofogliflozin hydrate

Alias: CSG 452 hydrate; CSG452; CSG-452; R-7201; R 7201; R7201;Tofogliflozin hydrate
Cat No.:V2785 Purity: ≥98%
Tofogliflozin (also known as CSG-452) hydrate is a novel, very potent and highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2) with Ki values of 2.9, 14.9, and 6.4 nM for human, rat, and mouse respectively.
Tofogliflozin hydrate
Tofogliflozin hydrate Chemical Structure CAS No.: 1201913-82-7
Product category: SGLT
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Tofogliflozin hydrate:

  • Tofogliflozin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tofogliflozin (also known as CSG-452) hydrate is a novel, very potent and highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2) with Ki values of 2.9, 14.9, and 6.4 nM for human, rat, and mouse respectively. Tofogliflozin competitively inhibited SGLT2 in cells that overexpress SGLT2. The selectivity of tofogliflozin towards human SGLT2 versus human SGLT1, SGLT6, and sodium/myo-inositol transporter 1 is the highest among the tested SGLT2 inhibitors under clinical trials. Long-term inhibition of renal SGLT2 by tofogliflozin not only preserved pancreatic beta-cell function, but also prevented kidney dysfunction in a mouse model of type 2 diabetes. These findings suggest that long-term use of tofogliflozin in patients with type 2 diabetes may prevent progression of diabetic nephropathy.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
When tubular cells are exposed to high glucose levels, tofofloxacin (3–30 nM) treatment for 24 hours inhibits the production of oxidative stress and the expression of the monocyte chemoattractant protein-1 (MCP-1) gene[2]. Treatment with tofofloxacin (3–30 nM; 8 days; tubular epithelial cells) prevents the high glucose-induced apoptotic cell death[2].
ln Vivo
The treatment of obese diabetic mice with tofogliflozin (0.1–10 mg/kg; oral administration; once daily; for 4 weeks; db/db mice) improves hyperglycemia and, consequently, ameliorates glucose intolerance[1].
Cell Assay
RT-PCR[2]
Cell Types: Tubular epithelial cells
Tested Concentrations: 3 nM and 30 nM
Incubation Duration: 24 hrs (hours)
Experimental Results: Inhibited MCP -1 gene expression in tubular cells induced by high glucose exposure.

Apoptosis Analysis[2]
Cell Types: Tubular epithelial cells
Tested Concentrations: 3 nM and 30 nM
Incubation Duration: 8 days
Experimental Results: Inhibited the apoptotic cell death induced by high glucose.
Animal Protocol
Animal/Disease Models: db/db mice[1] ]
Doses: 0.1 mg/kg, 0.3 mg/kg, 1 mg/kg, 3 mg/kg, or 10 mg/kg
Route of Administration: Oral administration; one time/day; for 4 weeks
Experimental Results: Observed acute blood glucose reduction, dose-dependently decreased glycated hemoglobin, Dramatically prevented the decrease of IRI levels at doses of 3 and 10 mg/kg, and no difference in food intake or body weight.
References

[1]. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J Pharmacol Exp Ther. 2012 Jun;341(3):692-701.

[2]. Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation. Horm Metab Res. 2016 Mar;48(3):191-5.

Additional Infomation
Tofogliflozin has been used in trials studying the treatment and prevention of Diabetes Mellitus Type 2.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H26O6.H2O
Molecular Weight
404.45
Exact Mass
404.184
CAS #
1201913-82-7
Related CAS #
Tofogliflozin;903565-83-3
PubChem CID
46908928
Appearance
White to off-white solid powder
LogP
0.932
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
4
Heavy Atom Count
29
Complexity
521
Defined Atom Stereocenter Count
5
SMILES
CCC1=CC=C(C=C1)CC2=CC3=C(CO[C@@]34[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O)C=C2.O
InChi Key
ZXOCGDDVNPDRIW-NHFZGCSJSA-N
InChi Code
InChI=1S/C22H26O6.H2O/c1-2-13-3-5-14(6-4-13)9-15-7-8-16-12-27-22(17(16)10-15)21(26)20(25)19(24)18(11-23)28-22;/h3-8,10,18-21,23-26H,2,9,11-12H2,1H3;1H2/t18-,19-,20+,21-,22+;/m1./s1
Chemical Name
(3S,3'R,4'S,5'S,6'R)-5-[(4-ethylphenyl)methyl]-6'-(hydroxymethyl)spiro[1H-2-benzofuran-3,2'-oxane]-3',4',5'-triol;hydrate
Synonyms
CSG 452 hydrate; CSG452; CSG-452; R-7201; R 7201; R7201;Tofogliflozin hydrate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:84 mg/mL (207.7 mM)
Water: 4 mg/mL (9.9 mM)
Ethanol:84 mg/mL (207.7 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.18 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.18 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.18 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 2.5 mg/mL (6.18 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication (<60°C).

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4725 mL 12.3625 mL 24.7249 mL
5 mM 0.4945 mL 2.4725 mL 4.9450 mL
10 mM 0.2472 mL 1.2362 mL 2.4725 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Tofogliflozin hydrate

    Blood glucose and glycated Hb in db/db mice.2013 Oct

  • Tofogliflozin hydrate

    Urinary albumin excretion in db/db and db/ + m mice.2013 Oct

  • Tofogliflozin hydrate

    Histological analyses of glomeruli at 8 weeks of treatment (2).2013 Oct
Contact Us