yingweiwo

Toludesvenlafaxine

Alias: Ansofaxine; LPM-570065; LY03005 toludesvenlafaxinum; Toludesvenlafaxine; LPM570065; ODVP2; Odesmethylvenlafaxine 4-methylbenzoate ester.
Cat No.:V21063 Purity: ≥98%
Ansofaxine is a serotonin-norepinephrine reuptake inhibitor (SNRI) studied in depression
Toludesvenlafaxine
Toludesvenlafaxine Chemical Structure CAS No.: 916918-80-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
250mg
500mg
1g
2g

Other Forms of Toludesvenlafaxine:

  • Ansofaxine hydrochloride ( LY03005; LPM570065)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
InvivoChem's Toludesvenlafaxine has been cited by 1 publication
Product Description
Ansofaxine is a serotonin-norepinephrine reuptake inhibitor (SNRI) studied in depression
Biological Activity I Assay Protocols (From Reference)
Targets
Serotonin (IC50 = 723 nM); dopamine (IC50 = 491 nM); norepinephrine (IC50 = 763 nM)
ln Vitro
Triple reuptake inhibitors (TRIs) are currently being developed as a new class of promising antidepressants that block serotonin (5-HT), dopamine (DA) and norepinephrine (NE) transporters, thereby increasing extracellular monoamine concentrations. The purpose of this study was to investigate the effects of LPM570065, a novel TRI and a desvenlafaxine prodrug, on extracellular 5-HT, DA and NE levels in the rat striatum after acute and chronic administration relative to desvenlafaxine, using High Performance Liquid Chromatography (HPLC) and microdialysis[1].
ln Vivo
Ansofaxine enters the rat striatum quickly, transforms into desvenlafaxine, and shows a greater overall exposure when compared to when desvenlafaxine is administered. The administration of oral suspension of ansofaxine, both acutely and chronically, is associated with higher levels of 5-HT, dopamine, and norepinephrine than is the case with desvenlafaxine administration. Acute intravenous ansofaxine solution administration does not result in the unwanted 90% reduction in extracellular 5-HT levels, in contrast to desvenlafaxine. When combined with WAY-100635, acute ansofaxine administration results in a capped increase in extracellular 5-HT levels. More so than desvenlafaxine administration in comparison, ansofaxine administration, both acute and chronic, shortens the period of immobility[1].
Animal Protocol
Rats: This study uses oral solutions, oral suspensions, and intravenous solutions of ansofaxine and desvenlafaxine to investigate the effects of acute administration on extracellular 5-HT, DA, and NE levels. When 5-HT1A receptors are blocked by pretreatment with WAY-100635, an equal number of animals are used to investigate the acute effects of ansofaxine and desvenlafaxine on extracellular 5-HT levels. Pets are split into three groups at random for the 14-day chronic administration. Every day for 14 days, oral suspensions of desvenlafaxine, ansofaxine, and vehicle are given. The impact of ansofaxine and desvenlafaxine on extracellular 5-HT, DA, and NE levels is investigated on the fourteenth day of chronic administration[1].
References
[1]. The effects of LPM570065, a novel triple reuptake inhibitor, on extracellular serotonin, dopamineand norepinephrine levels in rats. PLoS One. 2014 Mar 10;9(3):e91775. :[2]. Efficacy, Safety, and Tolerability of Ansofaxine (LY03005) Extended-Release Tablet for Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled, Dose-Finding, Phase 2 Clinical Trial. Int J Neuropsychopharmacol. 2021 Nov 8:pyab074
Additional Infomation
Background: Ansofaxine (LY03005) extended-release tablet is a potential triple reuptake inhibitor of serotonin, norepinephrine, and dopamine. This study assessed the efficacy, safety, and appropriate dosage of ansofaxine for the treatment of major depressive disorder (MDD).[2]
Methods: A multicenter, randomized, double-blind, placebo-controlled, dose-finding, Phase 2 clinical trial was conducted in China. Eligible patients with MDD (18-65 years) were randomly assigned to receive fixed-dose ansofaxine extended-release tablets (40, 80, 120, or 160 mg/d) or placebo for 6 weeks. The primary outcome measure was a change in the total score on the 17-item Hamilton Depression Rating Scale from baseline to week 6.[2]
Results: A total of 260 patients were recruited from October 2015 to September 2017, and 255 patients received the study drug as follows: 40 mg (n = 52), 80 mg (n = 52), 120 mg (n = 51), and 160 mg (n = 51) ansofaxine and placebo (n = 49). Significant differences were found in mean changes in 17-item Hamilton Depression Rating Scale total scores at week 6 in the 4 ansofaxine groups vs placebo (-12.46; χ2 = -9.71, P = .0447). All doses of ansofaxine were generally well-tolerated. Treatment-related adverse events occurred in 141 patients (303 cases), yielding incidence rates of 51.92%, 65.38%, 56.86%, and 62.75% in the 40-, 80-, 120-, and 160-mg ansofaxine groups and 38.78% in the placebo group.[2]
Conclusion: Active doses (40, 80, 120, and 160 mg/d) of ansofaxine in a controlled setting were safe, tolerated, and effective in improving depression symptoms in MDD patients.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H31NO3
Molecular Weight
381.52
Exact Mass
381.230408
Elemental Analysis
C, 75.56; H, 8.19; N, 3.67; O, 12.58
CAS #
916918-80-4
Related CAS #
Ansofaxine hydrochloride;916918-84-8
PubChem CID
15983287
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
Density
1.1±0.1 g/cm3
Boiling Point
526.4±45.0 °C at 760 mmHg
Flash Point
272.1±28.7 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.581
LogP
4.83
tPSA
49.8Ų
SMILES
CN(C)CC(c1ccc(OC(=O)c2ccc(C)cc2)cc1)C3(O)CCCCC3
InChi Key
QKYBZJLEMOZFFU-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H31NO3/c1-18-7-9-20(10-8-18)23(26)28-21-13-11-19(12-14-21)22(17-25(2)3)24(27)15-5-4-6-16-24/h7-14,22,27H,4-6,15-17H2,1-3H3
Chemical Name
4-(2-(dimethylamino)-1-(1-hydroxycyclohexyl)ethyl)phenyl 4-methylbenzoate
Synonyms
Ansofaxine; LPM-570065; LY03005 toludesvenlafaxinum; Toludesvenlafaxine; LPM570065; ODVP2; Odesmethylvenlafaxine 4-methylbenzoate ester.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6211 mL 13.1055 mL 26.2109 mL
5 mM 0.5242 mL 2.6211 mL 5.2422 mL
10 mM 0.2621 mL 1.3105 mL 2.6211 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us