yingweiwo

Tomivosertib HCl (eFT-508)

Alias: Tomivosertib HCl; eFT508; eFT-508; eFT508HCl; Tomivosertib hydrochloride; EFT-508 hydrochloride; Tomivosertib (hydrochloride); BW3S40K2UM; Tomivosertib hydrochloride [USAN]; eFT508 HCl; Tomivosertib HCl; eFT 508; eFT508 hydrochloride
Cat No.:V13062 Purity: ≥98%
Tomivosertib HCl (formerly eFT508; eFT-508), the hyudrochloride salt ofTomivosertib,is a reversible, ATP-competitive and orally bioavailable inhibitor of mitogen-activated protein kinase (MAPK)-interacting serine/threonine-protein kinase 1 (MNK1) and 2 (MNK2) with potential antineoplastic activity.
Tomivosertib HCl (eFT-508)
Tomivosertib HCl (eFT-508) Chemical Structure CAS No.: 1849590-02-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Tomivosertib HCl (eFT-508):

  • Tomivosertib (eFT-508)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tomivosertib HCl (formerly eFT508; eFT-508), the hyudrochloride salt of Tomivosertib, is a reversible, ATP-competitive and orally bioavailable inhibitor of mitogen-activated protein kinase (MAPK)-interacting serine/threonine-protein kinase 1 (MNK1) and 2 (MNK2) with potential antineoplastic activity. It inhibits MNK1/2 with IC50 values of 1-2 nM against both isoforms in enzyme assays. Upon oral administration, tomivosertib binds to and inhibits the activity of MNK1 and 2. This prevents MNK1/2-mediated signaling, and inhibits the phosphorylation of certain regulatory proteins, including eukaryotic translation initiation factor 4E (eIF4E), that regulate the translation of messenger RNAs (mRNAs) involved in tumor cell proliferation, angiogenesis, survival and immune signaling. This inhibits tumor cell proliferation in MNK1/2-overexpressing tumor cells. MNK1/2 are overexpressed in a variety of tumor cell types and promote phosphorylation of eIF4E; eIF4E is overexpressed in many tumor cell types and contributes to tumor development, maintenance and resistance.

Biological Activity I Assay Protocols (From Reference)
Targets
MNK1 (IC50 = 1-2 nM); MNK2 (IC50 = 1-2 nM); PD-L1
ln Vitro
Tomivosertib (eFT508) reduces eIF4E phosphorylation at serine 209 in tumor cell lines in a dose-dependent manner (IC50 = 2–16 nM). Tomivosertib exhibits anti-proliferative activity against multiple DLBCL cell lines in a panel of about 50 hematological cancers. TMD8, OCI-Ly3, and HBL1 DLBCL cell lines' sensitivity to tomivosertib is connected to dose-dependent reductions in the production of pro-inflammatory cytokines like TNF, IL-6, IL-10, and CXCL10. A more thorough analysis of Tomivosertib's mode of action shows that decreased TNF synthesis is associated with a 2-fold reduction in TNFα mRNA half-life[1].
ln Vivo
Tomivosertib (eFT508) exhibits significant anti-tumor activity in the TMD8 and HBL-1 ABC-DLBCL models, both of which contain activating MyD88 mutations. Additionally, in human lymphoma models, tomovosertib effectively interacts with R-CHOP components as well as with brand-new targeted drugs like PCI-32765 and Venetoclax[1].
Enzyme Assay
In the pathogenesis of numerous solid tumors and hematological malignancies, messenger RNA (mRNA) translation is dysregulated. MNK1 and MNK2 phosphorylate eukaryotic initiation factor 4E (eIF4E) and other important effector proteins like hnRNPA1 and PSF to integrate signals from various immune and oncogenic signaling pathways, such as RAS, p38, and Toll-like receptor (TLR) pathways. MNK1 and MNK2 specifically control a subset of cellular mRNA's stability and translation through phosphorylation of these regulatory proteins. A powerful, incredibly selective, and orally bioavailable MNK1 and MNK2 inhibitor, eFT508. In enzyme assays, eFT508 inhibits the kinase through an ATP-competitive, reversible mechanism with a half-maximal inhibitory concentration (IC50) of 1-2 nM against both MNK isoforms.
Cell Assay
Treatment of tumor cell lines with eFT508 led to a dose-dependent reduction in eIF4E phosphorylation at serine 209 (IC50 = 2-16 nM), consistent with previous findings that phosphorylation of this site is solely dependent upon MNK1/MNK2. In a panel of ~50 hematological cancers, eFT508 showed anti-proliferative activity against multiple DLBCL cell lines. Sensitivity to eFT508 in TMD8, OCI-Ly3 and HBL1 DLBCL cell lines was associated with dose-dependent decreases in production of pro-inflammatory cytokines including TNFα, IL-6, IL-10 and CXCL10. Further evaluation eFT508 mechanism of action demonstrated that decreased TNFα production correlated with a 2-fold decrease in TNFα mRNA half-life. [1]
Luciferase assay.[2]
KRASG12D and MYCTg;KRASG12D cells were transfected in 12-well plates with 200 ng of pGL3 (Firelfy luciferase) constructs containing full-length or mutant 5′UTR of PD-L1 and 40 ng of pRL (Renilla luciferase) plasmid using Lipofectamine 2000 according to the manufacturer’s instructions. Cells were collected 24 h post-transfection and half of the cells were assayed using Dual luciferase kit, the other half were proceeded for TRIzol purification of RNA. Firefly luciferase activity was normalized to Renilla activity, and further normalized to Firefly and Renilla luciferase RNA amounts quantified by RT-qPCR.
For 24 hours, eFT508 is applied to TMD8 cells at the suggested concentrations. m7-GTP is used on cell lysates. Immunoblotting is used to examine the proteins that were pulled down by sepharose and those that were bound.
Animal Protocol
Intrahepatic metastatic HCC graft implantation and drug treatment.[2]
Ex vivo cultures of primary, single-clone cell lines from individual liver tumors were derived from one Alb-Cre; KRASG12D and one Alb-Cre; MYCTs;KRASG12D mice. HCC cells described above were trypsinized, counted and 5 ×105 of cells were injected into the subcapsular region of the median liver lobe of C57BL/6 mice. Analgesics including bupivacaine and buprenorphine were given to the mice, while meloxicam was not given as it may have an effect on the tumor immune microenvironment. Primary liver tumor formation was detected at day 4. Over 70% of the mice successfully develop lung metastasis at days 12–18. Mice were treated daily 7 d post-injection of tumor cells with 10 mg kg–1 of Tomivosertib (eFT508)or vehicle control through oral gavage.[2]

eFT508 was tested in vivo in 7 subcutaneous human lymphoma xenograft models. Significant anti-tumor activity was observed in the TMD8 and HBL-1 ABC-DLBCL models, both of which harbor activating MyD88 mutations.
References

[1]. eFT508, a Potent and Selective Mitogen-Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 Inhibitor, Is Efficacious in Preclinical Models of Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2015 126:1554.

[2]. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med. 2019 Feb;25(2):301-311.

Additional Infomation
Tomivosertib is under investigation in clinical trial NCT03318562 (A PD Study of Oral eFT508 in Subjects With Advanced TNBC and HCC).
Tomivosertib is an orally bioavailable inhibitor of mitogen-activated protein kinase (MAPK)-interacting serine/threonine-protein kinase 1 (MNK1) and 2 (MNK2), with potential antineoplastic activity. Upon oral administration, tomivosertib binds to and inhibits the activity of MNK1 and 2. This prevents MNK1/2-mediated signaling, and inhibits the phosphorylation of certain regulatory proteins, including eukaryotic translation initiation factor 4E (eIF4E), that regulate the translation of messenger RNAs (mRNAs) involved in tumor cell proliferation, angiogenesis, survival and immune signaling. This inhibits tumor cell proliferation in MNK1/2-overexpressing tumor cells. MNK1/2 are overexpressed in a variety of tumor cell types and promote phosphorylation of eIF4E; eIF4E is overexpressed in many tumor cell types and contributes to tumor development, maintenance and resistance.
Dysregulated translation of messenger RNA (mRNA) plays a role in the pathogenesis of multiple solid tumors and hematological malignancies. MNK1 and MNK2 integrate signals from several oncogenic and immune signaling pathways, including RAS, p38, and Toll-like receptor (TLR) pathways, by phosphorylating eukaryotic initiation factor 4E (eIF4E) and other key effector proteins including hnRNPA1 and PSF. Through phosphorylation of these regulatory proteins MNK1 and MNK2 selectively regulate the stability and translation of a subset of cellular mRNA. eFT508 is a potent, highly selective, and orally bioavailable MNK1 and MNK2 inhibitor. eFT508 has a half-maximal inhibitory concentration (IC50) of 1-2 nM against both MNK isoforms in enzyme assays and inhibits the kinase through a reversible, ATP-competitive mechanism of action. Treatment of tumor cell lines with eFT508 led to a dose-dependent reduction in eIF4E phosphorylation at serine 209 (IC50 = 2-16 nM), consistent with previous findings that phosphorylation of this site is solely dependent upon MNK1/MNK2. In a panel of ~50 hematological cancers, eFT508 showed anti-proliferative activity against multiple DLBCL cell lines. Sensitivity to eFT508 in TMD8, OCI-Ly3 and HBL1 DLBCL cell lines was associated with dose-dependent decreases in production of pro-inflammatory cytokines including TNFα, IL-6, IL-10 and CXCL10. Further evaluation eFT508 mechanism of action demonstrated that decreased TNFα production correlated with a 2-fold decrease in TNFα mRNA half-life. These findings are consistent with MNK1 phosphorylation of specific RNA-binding proteins, eg, hnRNPA1, that regulate the stability and translation of mRNA containing specific AU-rich elements (ARE) in their 3'-untranslated regions (UTR). Pro-inflammatory cytokines are drivers of key hallmarks of cancer including tumor cell survival, migration and invasion, angiogenesis, and immune evasion, while also driving drug resistance. Therefore, eFT508 was tested in vivo in 7 subcutaneous human lymphoma xenograft models. Significant anti-tumor activity was observed in the TMD8 and HBL-1 ABC-DLBCL models, both of which harbor activating MyD88 mutations. In addition, eFT508 combined effectively with components of R-CHOP and with novel targeted agents, including ibrutinib and venetoclax, in human lymphoma models. These results underscore the potential of eFT508 for the treatment of DLBCL. eFT508 has also been characterized in nonclinical safety pharmacology and toxicology studies. Clinical trials in patients with hematological and other malignancies are planned.[1]
Cancer cells develop mechanisms to escape immunosurveillance, among which modulating the expression of immune suppressive messenger RNAs is most well-documented. However, how this is molecularly achieved remains largely unresolved. Here, we develop an in vivo mouse model of liver cancer to study oncogene cooperation in immunosurveillance. We show that MYC overexpression (MYCTg) synergizes with KRASG12D to induce an aggressive liver tumor leading to metastasis formation and reduced mouse survival compared with KRASG12D alone. Genome-wide ribosomal footprinting of MYCTg;KRASG12 tumors compared with KRASG12D revealed potential alterations in translation of mRNAs, including programmed-death-ligand 1 (PD-L1). Further analysis revealed that PD-L1 translation is repressed in KRASG12D tumors by functional, non-canonical upstream open reading frames in its 5' untranslated region, which is bypassed in MYCTg;KRASG12D tumors to evade immune attack. We show that this mechanism of PD-L1 translational upregulation was effectively targeted by a potent, clinical compound that inhibits eIF4E phosphorylation, eFT508, which reverses the aggressive and metastatic characteristics of MYCTg;KRASG12D tumors. Together, these studies reveal how immune-checkpoint proteins are manipulated by distinct oncogenes at the level of mRNA translation, which can be exploited for new immunotherapies.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H21CLN6O2
Molecular Weight
376.840641736984
Exact Mass
376.141
Elemental Analysis
C, 54.18; H, 5.62; Cl, 9.41; N, 22.30; O, 8.49
CAS #
1849590-02-8
Related CAS #
1849590-02-8 (HCl);1849590-01-7;
PubChem CID
118598855
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
2
Heavy Atom Count
26
Complexity
664
Defined Atom Stereocenter Count
0
InChi Key
WBGPPUUXCGKTSC-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H20N6O2.ClH/c1-10-7-11(21-13-8-12(18)19-9-20-13)16(25)23-14(10)15(24)22-17(23)5-3-2-4-6-17/h7-9H,2-6H2,1H3,(H,22,24)(H3,18,19,20,21)1H
Chemical Name
6'-((6-aminopyrimidin-4-yl)amino)-8'-methyl-2'H-spiro[cyclohexane-1,3'-imidazo[1,5-a]pyridine]-1',5'-dione hydrochloride
Synonyms
Tomivosertib HCl; eFT508; eFT-508; eFT508HCl; Tomivosertib hydrochloride; EFT-508 hydrochloride; Tomivosertib (hydrochloride); BW3S40K2UM; Tomivosertib hydrochloride [USAN]; eFT508 HCl; Tomivosertib HCl; eFT 508; eFT508 hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6536 mL 13.2682 mL 26.5365 mL
5 mM 0.5307 mL 2.6536 mL 5.3073 mL
10 mM 0.2654 mL 1.3268 mL 2.6536 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05744739 Recruiting Procedure: Biospecimen
Collection
Drug: Tomivosertib
Acute Myeloid Leukemia Northwestern University September 29, 2023 Phase 1
NCT04622007 Recruiting Drug: Tomivosertib
Drug: Pemetrexed
Non-small Cell Lung Cancer Effector Therapeutics June 2, 2021 Phase 2
NCT04261218 Completed Drug: tomivosertib
Drug: paclitaxel
Breast Cancer Translational Research in
Oncology
August 25, 2020 Phase 2
NCT03616834 Completed Drug: Tomivosertib
(eFT-508)
Solid Tumors Effector Therapeutics July 25, 2018 Phase 2
NCT02937675 Terminated Drug: Tomivosertib
(eFT-508)
Lymphoma Effector Therapeutics February 8, 2017 Phase 1
Phase 2
Contact Us