yingweiwo

Topiroxostat

Alias: FYX051; FYX-051; FYX 051; Trade names: Topiloric; Uriadec; Topiroxostat.
Cat No.:V2925 Purity: ≥98%
Topiroxostat (formerly FYX-051; FYX051; Brand names: Topiloric and Uriadec) is a novel and potent xanthine oxidoreductase (XOR) inhibitor with urate lowering effects.
Topiroxostat
Topiroxostat Chemical Structure CAS No.: 577778-58-6
Product category: Xanthine Oxidase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Topiroxostat:

  • Topiroxostat-d4
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
InvivoChem's Topiroxostat has been cited by 1 publication
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Topiroxostat (formerly FYX-051; FYX051; Brand names: Topiloric and Uriadec) is a novel and potent xanthine oxidoreductase (XOR) inhibitor with urate lowering effects. It is an an approved drug in Japan for the treatment of gout and hyperuricemia. It reduces serum urate levels and has IC50 value of 5.3 nM for XOR. It is a approved drug for the treatment of gout and hyperuricemia. It was initially approved in Japan in June 2013. Steady-state kinetics study showed that it initially behaved as a competitive-type inhibitor with a K(i) value of 5.7 × 10(-9) M, then after a few minutes it formed a tight complex with XOR via a Mo-oxygen-carbon atom covalent linkage, as reported previously (Proc Natl Acad Sci USA 101:7931-7936, 2004). Thus, FYX-051 is a hybrid-type inhibitor exhibiting both structure- and mechanism-based inhibition. The FYX-051-XOR complex decomposed with a half-life of 20.4 h, but the enzyme activity did not fully recover.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Topiroxostat (FYX-051, compound 39) has strong and longer-lasting effects that have been verified by XOR-Topiroxostat complex crystallographic investigation. The binding activity between Topiroxostat and XOR has been observed to be significantly influenced by the cyano group of Topiroxostat. Asn 768 of XOR and the cyano group of Topiroxostat have formed a hydrogen bond, which is responsible for this[1].
ln Vivo
In a rat model of potassium oxonate-induced hyperuricemia, topiroxostat (FYX-051; 0.03-10 mg/kg; oral administration; for 1 hour; male Wistar/ST strain rats) treatment demonstrates a strong and long-lasting hypouricemic effect[2]. Topiroxostat (FYX-051, compound 39) has a Cmax of 4.62 μg/mL (3 mg/kg) and a bioavailability of 69.6%, respectively. Additionally, Topiroxostat's t1/2 value is 19.7 hours[1].
Animal Protocol
Animal/Disease Models: Male Wistar/ST strain rats (7 weeks old) injected with potassium oxonate[2]
Doses: 0.03 mg/kg, 0.1 mg/kg, 0.3 mg/kg, 1 mg/kg, 3 mg/kg, 10 mg/kg
Route of Administration: Oral administration; for 1 hour
Experimental Results: Caused a dose-dependent decrease in serum urate levels with an extremely low ED50 of 0.15 mg/kg, evaluated at 1 h after oral administration.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The time to reach peak plasma concentration of 229.9 ng/mL was 0.67 hour following a single oral dose of 20mg topiroxostat. The oral bioavailability in male rats was 69.6% after oral administration of a single dose of 1mg/kg.
Urinary excretion and fecal excretion of radiolabeled topiroxostat are 30.4% and 40.9% of total dose of 1mg/kg administered to rats, respectively. Within 24 h after a single oral administration of 120mg of topiroxostat, the main metabolites of topiroxostat, N-oxide, N1-gluculonide, and N2-gluculonide, are excreted into urine about 4.8, 43.3, and 16.1 % of the dose, respectively. Unchanged topiroxostat and the hydroxide metabolite was 0.1% or less.
The distribution of 14C-topiroxostat (20, 200, and 2000 ng/mL) in human blood cells was 6.7% to 12.8%.
The apparent total body clearance rate is 89.5 L/h and the renal clearance rate is 17.4 mL/h following a single oral dose of 20mg topiroxostat.
Metabolism / Metabolites
Topiroxostat is mainly inactivated by hepatic metabolism. 2-hydroxy topiroxostat is formed from primary hydroxylation of the drug by xanthine oxidase and still retains an inhibitory activity on the enzyme. Topiroxostat N-oxide is another major metabolite that can be detected in plasma and urine. It is determined that the N-oxide and hydroxide metabolites are pyridine N-oxide and pyridine 2 (or 6)-hydroxide, respectively. Topiroxostat is mainly inactivated by hepatic metabolism where it undergoes glucuronidation. The metabolism of topiroxostat to N1-and N2-glucuronide conjugates is mainly mediated by UGT1A1, 1A7, and 1A9, with UGT1A9 being the most predominant.
FYX-051 has known human metabolites that include 4-[2-[(3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]-5-pyridin-4-yl-1,2,4-triazol-3-yl]pyridine-2-carbonitrilium and (2S,3S,4S,5R)-6-[3-(2-cyanopyridin-4-yl)-5-pyridin-4-yl-1,2,4-triazol-1-yl]-3,4,5-trihydroxyoxane-2-carboxylic acid.
Biological Half-Life
The mean half life of topiroxostat after a single oral dose of 20mg topiroxostat is 5 hours under fasting condition. The complex of molybdenum (IV)- topiroxostat has an approximate half life of 20.4 hours.
Toxicity/Toxicokinetics
Protein Binding
The mean protein binding of radiolabeled (14C)-topiroxostat in human plasma is >97.5% at 20ng/mL, 98.8% at 200ng/mL, and 98.4% at 2000ng/mL. Binding to serum albumin is most predominant with 92.3-93.2%, and mean protein binding to α1-acid protein and γ-globulin is 12.3% to 16.8% and 34.7% to 40.4%, respectively.
References
[1]. Sato T, et al. Discovery of 3-(2-cyano-4-pyridyl)-5-(4-pyridyl)-1,2,4-triazole, FYX-051 - a xanthine oxidoreductase inhibitor for the treatment of hyperuricemia [corrected]. Bioorg Med Chem Lett. 2009 Nov 1;19(21):6225-9.
[2]. Matsumoto K, et al. FYX-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J Pharmacol Exp Ther. 2011 Jan;336(1):95-103.
Additional Infomation
Topiroxostat is a selective xanthine oxidase inhibitor developed for treatment and management of hyperuricemia and gout. Xanthine oxidase, or xanthine oxidoreductase (XOR), regulates purine metabolism, and inhibition of the enzyme results in efficacious reduction of serum urate levels. Xanthine oxidase inhibitors are classified into two groups; purine analogs such as [DB00437] and [DB05262], and non-purine agents which includes topiroxostat. While [DB00437] is considered a first-line therapy in treating hyperuricemic conditions, it is often associated with side effects and ineffective in reducing uric acid levels under recommended dosing regimens. Renal complications are major comorbidities that limit the [DB00437] therapy as dose reductions are recommended. Topiroxostat and its metabolites are shown to be unaffected by renal complications, thus may be effective in patients with chronic kidney diseases. Approved for therapeutic use in Japan since 2013, topiroxostat is marketed under the name Topiloric and Uriadec and is orally administered twice daily.
Drug Indication
Indicated for the treatment of gout and hyperurcemia in Japan.
Mechanism of Action
Uric acid synthesis depends on the action of xanthine oxidase activity in the conversion of hypoxanthine to xanthine, followed by the conversion of xanthine to uric acid. Xanthine oxidase consists of a molybdenum ion as cofactor in the active center that has different redox states upon substrate binding. When a substrate such as hypoxanthine or xanthine binds, xanthine oxidase hydroxylates it and molybdenum ion is reduced from hexavalent, Mo(VI), to tetravalent form, Mo(IV). Molybdenum ion is reoxidized into hexavalent state once the hydroxylated substrate, xanthine or uric acid, dissociates from the active site. Topiroxostat is shown to interact with multiple amino acid residues of the solvent channel and additionally forms a reaction intermediate by covalent binding with molybdenum (IV) ion via an oxygen atom. It also forms hydrogen bonds with molybdenum (VI) ion, suggesting that it has multiple inhibition modes to xanthine oxidase. Enhanced binding interactions to xanthine oxidase achieves delayed dissociation of topiroxostat from the enzyme. 2-hydroxy-topiroxostat, the metabolite formed by primary hydroxylation of topiroxostat by xanthine oxidase, also causes time and concentration-dependent inhibition of the enzyme. Topiroxostat is shown to inhibit ATP-binding cassette transporter G2 (ABCG2) in vitro, which is a membrane protein responsible for recovering uric acid in the kidneys and secreting uric acid from the intestines.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C13H8N6
Molecular Weight
248.24
Exact Mass
248.081
CAS #
577778-58-6
Related CAS #
Topiroxostat-d4;2732868-49-2
PubChem CID
5288320
Appearance
Typically exists as solid at room temperature
Density
1.5±0.1 g/cm3
Boiling Point
594.7±60.0 °C at 760 mmHg
Flash Point
175.3±18.1 °C
Vapour Pressure
0.0±1.7 mmHg at 25°C
Index of Refraction
1.697
LogP
1.35
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
2
Heavy Atom Count
19
Complexity
344
Defined Atom Stereocenter Count
0
SMILES
N1([H])C(C2C([H])=C([H])N=C([H])C=2[H])=NC(C2C([H])=C([H])N=C(C#N)C=2[H])=N1
InChi Key
UBVZQGOVTLIHLH-UHFFFAOYSA-N
InChi Code
InChI=1S/C13H8N6/c14-8-11-7-10(3-6-16-11)13-17-12(18-19-13)9-1-4-15-5-2-9/h1-7H,(H,17,18,19)
Chemical Name
4-(5-pyridin-4-yl-1H-1,2,4-triazol-3-yl)pyridine-2-carbonitrile
Synonyms
FYX051; FYX-051; FYX 051; Trade names: Topiloric; Uriadec; Topiroxostat.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:23.5 mg/mL
Water:<1 mg/mL
Ethanol: N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.0284 mL 20.1418 mL 40.2836 mL
5 mM 0.8057 mL 4.0284 mL 8.0567 mL
10 mM 0.4028 mL 2.0142 mL 4.0284 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us