Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
... Rats dosed orally with radiolabelled trifluralin (14)C-CF3 or (14)C-N-propyl-; 100 mg/kg bw) excreted 80% of the dose in the feces; only 8% was unchanged trifluralin. Incomplete absorption was indicated by the finding that only 11-14% of the radioactivity was recovered from bile. ... Four monkeys (2 males and 2 females) were administered 2 mg/kg radio-labeled ethalfluralin in ethanol intravenously or topically to the forearm and the plasma level determined for 120 hours to determine an area under the curve for both types of applications. ... After 120 hours label was not detectable in 2 (1 male and 1 female) of the 4 animals studied. Since the 2 animals with undetectable plasma levels at 120 hour yielded the most consistent data, data from these animals were used to calculate the AUCs. The dermal absorption was determined by ratio of the area under the plasma curve AUC; [(AUC-dermal/(AUC-i.v.)] x 100 = 2.84%. /Ethalfluralin/ Approx 80% of ingested compound was excreted in feces, remainder in urine /of rats & dogs studied/. Metabolism / Metabolites Extensive nitro-reduction to the corresponding amines occurred, probably as a result of metabolism by the gut microflora. Absorbed trifluralin was extensively metabolized, primarily by N-dealkylation and nitro-reduction, and then excreted in the urine. In a rat metabolism study, (14)C-trifluralin ( >98% radiochemical purity) in corn oil was administered by gavage at 300 mg/kg/day to 5 Fischer 344 rats/sex on three consecutive days. Metabolite characterization of the 24-48 hour urinary samples (pooled by sex) and quantitation of urinary samples collected at 0-24, 24-48, and 48-54 hours and pooled by sex were performed using liquid scintillation counting, silica gel column chromatography, TLC, HPLC, NMR, and mass spectroscopy. The objective of this study was to identify the urinary metabolites of trifluralin. There was no sex-dependent effect on metabolic profiles. A minimum of 20-30 non-conjugated metabolites and an additional 10-20 conjugated metabolites were present in the urine, but no parent compound was detected. Information on the percentage of the administered dose excreted in the urine was not provided. However, no single metabolite accounted for more than 8-10% of the total urinary radioactivity, and the majority of the metabolites were present at 1-2% of the total urinary radioactivity. Thus, almost all of the metabolites were minor (<5% of the total radioactive dose). Metabolite F1B was found at 8.2-8.9% of the total urinary radioactivity in both sexes, and Metabolite F2, N-((3-(acetylamino)-2-amino-5-(trifluoromethyl)) phenyl)acetamide, was found at 4.0-5.2%. Metabolite F1B was partially characterized as retaining the trifluoromethyl groups, the two equivalent aromatic protons, and the two nitro groups, but the propyl groups were lost. Ten other metabolites were identified (<0.1-3.7% of total urinary radioactivity, each compound in each sex). Two additional metabolites were partially characterized (0.1-2.6% of total urinary radioactivity, each compound in each sex). Four metabolic pathways were identified as follows: (i) oxidative N-dealkylation of one or both propyl groups and metabolites which were hydroxylated on the propyl side chain; (ii) reduction of one or both nitro groups to the corresponding amine; (iii) cyclization reactions to give a variety of substituted and unsubstituted benzimidazole metabolites; and (iv) conjugation reactions, including acetylation of the reduced nitro groups, sulfate, and glucuronic acid conjugates. Major metabolites /found in urine & feces of treated ruminants/ were unidentified polar compounds, but N',N'-dipropyl-3-nitro-5-trifluoromethyl-ortho-phenylenediamine & N(4)N(4)-dipropyl-alpha,alpha,alpha-trifluorotoluene-3,4,5-triamine were also formed. Trifluralin is dealkylated in rumen /of dairy animals/, losing 1 or both propyl groups; nitro groups are reduced to 1 or 2 amino groups. 2 types of reactions occur simultaneously, leading to a trifluoromethyltriaminobenzene. For more Metabolism/Metabolites (Complete) data for TRIFLURALIN (6 total), please visit the HSDB record page. Biological Half-Life Four monkeys (2 males and 2 females) were administered 2 mg/kg radio-labeled ethalfluralin in ethanol intravenously or topically to the forearm and the plasma level determined for 120 hours to determine an area under the curve for both types of applications. Two compartments were noted with one-half lives of 1.71 hours for the plasma distributive phase and 79.1 hours for the terminal plasma disappearance phase. ... /Ethalfluralin/ Salmon parr salmo salar were subjected to high initial concentrations of trifluralin & then maintained in clear water for 12 months. Some were removed at preselected intervals for exam by x-ray and chemical analysis. Half-life of trifluralin in salmon parr was 40.5 days. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Data
LC50 (rat) = 2,800 mg/m3/1h Interactions Mice were fed trifluralin at 1000, 1500 & 2000 ppm in diet for 12 or 14 weeks. Tumors were induced by admin 8 mg of benzo(a)pyrene orally at two time periods. Inhibition of tumorigenesis in lung & forestomach by trifluralin was observed when it was fed in diet 1 wk before or 1 day following exposure to benzo(a)pyrene. Non-Human Toxicity Values LD50 Rat oral >10,000 mg/kg LD50 Mouse oral 500 mg/kg LD50 Rabbit oral >2000 mg/kg LD50 Dog oral >2000 mg/kg For more Non-Human Toxicity Values (Complete) data for TRIFLURALIN (11 total), please visit the HSDB record page. |
Additional Infomation |
Trifluralin is a yellow-orange crystalline solid. Denser than water and not soluble in water. Hence sinks in water. Melting point 48.5-49 °C. Used as a selective pre-emergence herbicide.
Trifluralin is a substituted aniline that is N,N-dipropylaniline substituted by a nitro groups at positions 2 and 6 and a trifluoromethyl group at position 4. It is an agrochemical used as a pre-emergence herbicide. It has a role as an environmental contaminant, a xenobiotic, a herbicide and an agrochemical. It is a C-nitro compound, a member of (trifluoromethyl)benzenes and a substituted aniline. Trifluralin is used as a herbicide. No information is available on the acute (short-term), chronic (long- term), reproductive, developmental, or carcinogenic effects of trifluralin in humans. Decreased weight gain and effects on the blood and liver were observed in dogs chronically exposed to trifluralin in their diet. Skeletal abnormalities and depressed fetal weight were observed in the offspring of rodents exposed via gavage (experimentally placing the chemical in the stomach). Increased incidences of urinary tract tumors and thyroid tumors were observed in rats exposed to trifluralin in their diet. Trifluralin did not produce statistically significant increases in tumors in other studies. EPA has classified trifluralin as a Group C, possible human carcinogen (cancer-causing agent). Trifluralin is a commonly used pre-emergence soil-incorporated herbicide. With about 14 million pounds used in the United States in 2001, it is one of the most widely used herbicides. Trifluralin is generally applied to the soil to provide control of a variety of annual grass and broadleaf weed species. It inhibits root development by interrupting mitosis, and thus can control weeds as they germinate. Its mode of action is selective and inhibits mitosis and cell division. A microtubule-disrupting pre-emergence herbicide. |
Molecular Formula |
C13H16F3N3O4
|
---|---|
Molecular Weight |
335.28
|
Exact Mass |
335.109
|
CAS # |
1582-09-8
|
Related CAS # |
Trifluralin-d14;347841-79-6
|
PubChem CID |
5569
|
Appearance |
Pink to red solid powder
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
369.1±42.0 °C at 760 mmHg
|
Melting Point |
48.5°C
|
Flash Point |
177.0±27.9 °C
|
Vapour Pressure |
0.0±0.8 mmHg at 25°C
|
Index of Refraction |
1.528
|
LogP |
5.41
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
23
|
Complexity |
392
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
ZSDSQXJSNMTJDA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C13H16F3N3O4/c1-3-5-17(6-4-2)12-10(18(20)21)7-9(13(14,15)16)8-11(12)19(22)23/h7-8H,3-6H2,1-2H3
|
Chemical Name |
2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)aniline
|
Synonyms |
Nitran; Elancolan; Trifluralin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 100 mg/mL (~298.26 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9826 mL | 14.9129 mL | 29.8258 mL | |
5 mM | 0.5965 mL | 2.9826 mL | 5.9652 mL | |
10 mM | 0.2983 mL | 1.4913 mL | 2.9826 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.