yingweiwo

Trilaciclib hydrochloride (G1T28)

Alias: Trilaciclib hydrochloride; 1977495-97-8; Trilaciclib dihydrochloride; trilaciclib 2HCl; G1T28 hydrochloride; G1T28 dihydrochloride; Cosela; Trilaciclib (hydrochloride); Trilaciclib HCl; G1T-28 hydrochloride; G1T28 HCl; G1T 28 HCl
Cat No.:V31977 Purity: ≥98%
Trilaciclibhydrochloride (G-1T28; Cosela), the hydrochloride salt ofTrilaciclib, is a short-acting CDK4/6 inhibitor with anticancer activity.
Trilaciclib hydrochloride (G1T28)
Trilaciclib hydrochloride (G1T28) Chemical Structure CAS No.: 1977495-97-8
Product category: CDK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Trilaciclib hydrochloride (G1T28):

  • Trilaciclib (G1T28)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =99.43%

Purity: ≥98%

Product Description

Trilaciclib hydrochloride (G-1T28; Cosela), the hydrochloride salt of Trilaciclib, is a short-acting CDK4/6 inhibitor with anticancer activity. With IC50s of 1 nM and 4 nM, respectively, it inhibits CDK4/6. FDA approved triadaclib in 2021 as a myelopreservation medication to lessen the incidence of bone marrow suppression brought on by chemotherapy.

Biological Activity I Assay Protocols (From Reference)
Targets
Cdk4/cyclin D1 (IC50 = 1 nM); cdk6/cyclin D3 (IC50 = 4 nM)
ln Vitro
A robust G1 cell-cycle arrest (time=0) is induced by incubating with Trilaciclib hydrochloride (G1T28) for 24 hours. At 16 hours following the washout of Trilaciclib hydrochloride, the cells have returned to the cell cycle and exhibit cell-cycle kinetics that are comparable to those of the untreated control group. These findings highlight the transient and reversible G1 arrest caused by triadaceticlib hydrochloride. Numerous widely used cytotoxic chemotherapy agents linked to myelosuppression are less toxic in vitro when Trilaciclib hydrochloride-mediated G1 cell-cycle arrest occurs in CDK4/6-sensitive cells[1].
ln Vivo
After 12 hours of treatment with tilacilib hydrochloride (G1T28), HSPC proliferation is robustly and dose-dependently suppressed. By the 24th hour, 5-ethynyl-2′-deoxyuridine (EdU) incorporation has returned to levels close to baseline in a dose-dependent manner. These findings show that a single oral dosage of trilaciclib hydrochloride can cause a dose-dependent, reversible cell-cycle arrest in HSPCs. Thirty minutes before receiving etoposide treatment, mice given 100 mg/kg of trilaciclib hydrochloride showed only background levels of caspase-3/7 activity. These findings show that trilaciclib hydrochloride can shield bone marrow from apoptosis brought on by chemotherapy in vivo. According to the data, treating HSPCs with trilaciclib hydrochloride before 5-fluorouracil (5-FU) probably reduces the damage that 5-FU causes during chemotherapy, hastening the recovery of blood counts[1].
Enzyme Assay
Nanosyn CDK in vitro assay[1]
Compounds were tested in CDK2-CYCLIN A, CDK2-CYCLIN E, CDK4-CYCLIN D1, CDK6-CYCLIN D3, CDK5-p25, CDK5-p35, CDK7-CYCLIN H-MAT1, and CDK9-CYCLIN T kinase assays by Nanosyn, Inc. The assays were completed using microfluidic kinase detection technology. The compounds were tested in 12-point dose–response format in singlicate at the Km for ATP. Phosphoacceptor substrate peptide concentration used was 1 μmol/L and staurosporine was used as the reference compound for all assays.
KINOMEscan primary screen and Kd determination[1]
G1T28 was profiled at DiscoveRx using their KINOMEscan and scanMAX screening technology. Briefly, G1T28 was tested at 100 and 1,000 times the biochemical IC50 as described in Table 1. All target kinases that responded to greater than 90% inhibition were tested as individuals for Kd determination.
Treatment of HS68, WM2664, and A2058 cells is performed for 4, 8, 16, or 24 hours with either DMSO (0.1%) or 300 nM Trilaciclib hydrochloride (G1T28). In order to prepare whole cell extracts, 1× HALT protease and phosphatase inhibitors are added to 1× radioimmunoprecipitation assay buffer. By using the kit and following the manufacturer's instructions, one can determine the total protein concentration. Protein is processed as mentioned earlier in order to prepare it for Western blot analysis. As a loading control, antibodies against total RB and β-tubulin are measured[1].
Cell Assay
Trilaciclib hydrochloride (G1T28) at final concentrations of 10, 30, 100, 300, 1,000, or 3,000 nM is applied to HS68 cells for a duration of 24 hours. After harvesting, cells are preserved in ice-cold methanol. PBS-CMF (calcium magnesium free) + 1% BSA, Fraction V, 20 μg propidium iodide, and 50 μg RNAse A are used to stain fixed cells. Software is used to finish the cell-cycle analysis after samples are processed on a Cyan ADP Analyzer[1].
Western blots[1]
HS68, WM2664, and A2058 cells were treated with 300 nmol/L G1T28 or DMSO (0.1%), for 4, 8, 16, or 24 hours. Whole cell extracts were prepared using 1× radioimmunoprecipitation assay buffer containing 1x HALT protease and phosphatase inhibitors. Total protein concentration was determined by using the bicinchoninic acid (BCA) Protein Assay Kit, according to the manufacturer's instructions. Fifteen micrograms of protein was heat denatured for 10 minutes at 70°C and resolved by Novex NuPAGE SDS–PAGE gel system and transferred to 0.45 μm nitrocellulose membrane by electroblotting. Membranes were blocked in LiCor Membrane Blocking Buffer and incubated overnight with rabbit anti-pRb (Ser807/811) antibody at a 1:1,000 dilution and mouse anti-MAPK antibody at a 1:2,000 dilution, as a loading control. Secondary antibodies were Goat anti-rabbit (680RD) and Goat anti-mouse (800CW) at a 1:15,000 dilution. Blots were incubated for 1 hour, washed and imaged using LiCor ImageStudio software (Version 4.0.21).
For H69, MCF7, SupT1, and ZR75-1 Western blot analysis, protein was processed as described previously. Antibodies to total RB and β-tubulin run as a loading control were assessed. A goat anti-rabbit secondary antibody was utilized at a dilution of 1:15,000.
Cell-cycle analysis[1]
HS68 cells were treated for 24 hours with G1T28 at 10, 30, 100, 300, 1,000, or 3,000 nmol/L final concentration. Cells were harvested and fixed in ice-cold methanol. Fixed cells were stained with 20 μg propidium iodide, 50 μg RNAse A in PBS-CMF (calcium magnesium free) + 1% BSA, Fraction V (Fisher Scientific). Samples were processed on Cyan ADP Analyzer, and cell-cycle analysis was completed using FlowJo software (Version 10.0.8; Tree Star).
Cell proliferation[1]
SupT1, MCF7, ZR-75-1, A2058, and H69 cells were seeded at 1,000 cells per well in Costar 3903 96-well plates. After 24 hours, plates were dosed with G1T28 at a nine-point dose concentration from 10 μmol/L to 1 nmol/L. Cell viability was determined after 4 or 6 days using the CellTiter-Glo assay following the manufacturer's recommendations. Plates were processed on BioTek Synergy2 multimode plate reader and data analyzed using GraphPad Prism 5 statistical software.
γH2AX and caspase-3/7 activation[1]
For the γH2AX assay, 30,000 HS68 cells were plated per well in 12-well plates and incubated for 24 hours at 37°C. Cells were incubated with 10, 30, 100, 300, or 1,000 nmol/L G1T28 or dimethyl sulfoxide as vehicle control for 16 hours. Plates were subsequently dosed with chemotherapy [5 μmol/L etoposide, 1 μmol/L doxorubicin, 100 μmol/L carboplatin, 156 nmol/L camptothecin, or 250 nmol/L paclitaxel]. For γH2AX, cells were harvested for analysis 8 hours after exposure to chemotherapy. Cells were fixed and stained using the H2AX Phosphorylation Assay Kit by the manufacturer's instruction. γH2AX-positive HS68 cells were quantified using FACSCalibur Flow Cytometer and FlowJo analysis software.
For the in vitro caspase-3/7 assays, HS68, H69, and SHP77 cells were seeded at 1,000 cells per well in Costar 3903 96-well plates. Cells were incubated with 10, 30, 100, 300, or 1,000 nmol/L G1T28 or dimethyl sulfoxide as vehicle control for 16 hours. Plates were subsequently dosed with chemotherapy as previously described and were analyzed directly in the plates 48 hours after chemotherapy treatment. Caspase-3/7 induction was measured using Caspase-Glo 3/7 Assay System by following the manufacturer's recommended instructions.
Animal Protocol
After implanting H69 cells, female athymic nude mice are observed until the start of treatment. When the tumors are large enough (150 mm3), mice are given different doses of topotecan and trilaciclib hydrochloride (G1T28) five days a week for four weeks. A maximum of 60 days following treatment are spent measuring tumors. If a mouse's tumor burden becomes too great before 60 days, it is humanely put down. Utilizing established procedures, the levels of topotecan and Trilaciclib hydrochloride in the blood plasma from mice treated with either or both of these agents are processed and examined[1].
In vitro washout experiments[1]
Twenty-four hours after seeding on 60-mm dishes, HS68 cells were treated with G1T28 at a 300 nmol/L final concentration for 24 hours. Wells were washed twice with PBS-CMF, and then replenished with fresh culture medium. The cells were further incubated for a series of time points (t = 16, 24, 40, 48 hours after washout). At the conclusion of the experiment, cells were harvested, fixed, and stained for cell-cycle analysis as described previously.
Pharmacodynamic assessment of G1T28 in mouse bone marrow[1]
Eight-week-old female FVB/N mice were given a single oral dose of vehicle alone (20% Solutol, Sigma-Aldrich) or G1T28 at 50, 100, or 150 mg/kg, followed 11 or 23 hours later by a single intraperitoneal injection of 100 μg 5-ethynyl-2′-deoxyuridine (EdU). Mice were euthanized 1 hour after EdU injection (i.e., total G1T28 treatment of 12 or 24 hours), and Lineage-negative cells (Lin−) were isolated using biotin anti-mouse lineage panel and anti-biotin microbeads (Miltenyi Biotec). Lin− cells were stained for EdU following the manufacturer's instructions.
Peripheral blood analysis of 5-FU and G1T28 in mice[1]
FVB/N female mice were given single oral doses of vehicle or G1T28 at 150 mg/kg, followed 30 minutes later by a single intraperitoneal dose of 5-fluorouracil (5-FU) at 150 mg/kg. CBCs were measured every 2 days starting on day 6. Data reported are from day 6 (Platelets), day 10 [white blood cells (WBC), neutrophils (Neu), lymphocytes (Lymph)], or day 16 [red blood cells (RBC)].
Caspase-3/7 activation in murine bone marrow[1]
C57Bl/6 female mice were given single oral doses of vehicle, 50 mg/kg or 100 mg/kg of G1T28 followed 30 minutes later by a single intraperitoneal dose of etoposide at 2 mg/kg. Six hours after treatment, mice were euthanized and bone marrow harvested. Caspase-3/7 activation was assessed using 100,000 bone marrow cells per well as previously described.
G1T28 and topotecan efficacy in RB-deficient tumors[1]
Female athymic nude mice were implanted with H69 cells and monitored until treatment initiation. Once tumors reached an acceptable size (150 mm3), mice were dosed in various combinations of G1T28 and topotecan for 5 days per week for 4 weeks. Tumors were measured for up to 60 days after treatment. All mice that reached excessive tumor burden before 60 days were humanely euthanized. All protocols were IACUC approved and experiments were completed at South Texas Accelerated Research Treatments (START). Topotecan and G1T28 levels in blood plasma from the mice treated with G1T28 and/or topotecan were processed and analyzed using established methods at Bioanalytical Systems, Inc.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption
Cmax and AUC of trilaciclib increase proportionally with dose.

Route of Elimination
79.1% of a radiolabelled dose is recovered in the feces, 7% as the unchanged parent compound. 14% of a radiolabelled dose is recovered in the urine, 2% as the unchanged parent compound.

Volume of Distribution
The volume of distribution of trilaciclib at steady state is 1130 L.

Clearance
The clearance of trilaciclib is 158 L/h.
Metabolism / Metabolites
Data regarding the metabolism of trilaciclib are not readily available, however it is expected to be extensively metabolised.
Biological Half-Life
The mean terminal half life of trilaciblib is approximately 14 h.
Toxicity/Toxicokinetics
Hepatotoxicity
In the prelicensure clinical trials of trilaciclib in patients with advanced cancer receiving cytotoxic chemotherapy, serum AST elevations arose in 17% of trilaciclib vs 14% of placebo recipients. The AST elevations were usually self-limited and mild and elevations above 5 times the upper limit of normal (ULN) were uncommon, being found in
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Protein Binding
Data regarding the protein binding of trilaciclib are not readily available.
References

[1]. Preclinical Characterization of G1T28: A Novel CDK4/6 Inhibitor for Reduction of Chemotherapy-Induced Myelosuppression. Mol Cancer Ther. 2016 May;15(5):783-93.

Additional Infomation
See also: Trilaciclib (has active moiety).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H32CL2N8O
Molecular Weight
519.469882011414
Exact Mass
518.207
Elemental Analysis
C, 55.49; H, 6.21; Cl, 13.65; N, 21.57; O, 3.08
CAS #
1977495-97-8
Related CAS #
Trilaciclib;1374743-00-6
PubChem CID
124081865
Appearance
Light yellow to yellow solid powder
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
3
Heavy Atom Count
35
Complexity
707
Defined Atom Stereocenter Count
0
SMILES
Cl.Cl.O=C1C2=CC3=CN=C(NC4C=CC(=CN=4)N4CCN(C)CC4)N=C3N2C2(CN1)CCCCC2
InChi Key
BRCYOXKEDFAUSA-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H30N8O.2ClH/c1-30-9-11-31(12-10-30)18-5-6-20(25-15-18)28-23-26-14-17-13-19-22(33)27-16-24(7-3-2-4-8-24)32(19)21(17)29-23;;/h5-6,13-15H,2-4,7-12,16H2,1H3,(H,27,33)(H,25,26,28,29);2*1H
Chemical Name
4-[[5-(4-methylpiperazin-1-yl)pyridin-2-yl]amino]spiro[1,3,5,11-tetrazatricyclo[7.4.0.02,7]trideca-2,4,6,8-tetraene-13,1'-cyclohexane]-10-one;dihydrochloride
Synonyms
Trilaciclib hydrochloride; 1977495-97-8; Trilaciclib dihydrochloride; trilaciclib 2HCl; G1T28 hydrochloride; G1T28 dihydrochloride; Cosela; Trilaciclib (hydrochloride); Trilaciclib HCl; G1T-28 hydrochloride; G1T28 HCl; G1T 28 HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O: ~25.6 mg/mL (~49.4 mM)
DMSO: ~1.1 mg/mL (~2.1 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9250 mL 9.6252 mL 19.2504 mL
5 mM 0.3850 mL 1.9250 mL 3.8501 mL
10 mM 0.1925 mL 0.9625 mL 1.9250 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Phase 2, Randomized, Open-Label Study of Trilaciclib Administered with First-Line Platinum-Based Chemotherapy and Avelumab Maintenance Therapy in Patients with Untreated, Locally Advanced or Metastatic Urothelial Carcinoma (PRESERVE 3)
EudraCT: 2021-000205-24
Phase: Phase 2
Status: Prematurely Ended
Date: 2021-10-28
A Phase 3, Randomized, Double-Blind Study of Trilaciclib or Placebo in Patients Receiving First- or Second-Line Gemcitabine and Carboplatin Chemotherapy for Locally Advanced Unresectable or Metastatic Triple-Negative Breast Cancer (PRESERVE 2)
EudraCT: 2020-004930-39
Phase: Phase 3
Status: Completed
Date: 2021-09-30
A Phase 2 Randomized, Double-blind, Clinical Trial of Trilaciclib versus Placebo in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) Treated with Docetaxel in the 2nd/3rd Line Setting (PRESERVE 4)
EudraCT: 2021-000186-32
Phase: Phase 2
Status: Prematurely Ended
Date: 2021-08-11
PRESERVE 1: A Phase 3 Randomized, Double-blind Trial of Trilaciclib versus Placebo in Patients Receiving FOLFOXIRI/Bevacizumab for Metastatic Colorectal Cancer
EudraCT: 2019-003826-25
Phase: Phase 3
Status: Prematurely Ended, Completed, GB - no longer in EU/EEA
Date: 2020-12-08
Phase 2 Study of Carboplatin, Etoposide, and Atezolizumab With or Without
EudraCT: 2017-000358-20
Phase: Phase 2
Status: Completed
Date: 2017-07-12
Biological Data
  • Chemical structure, kinome specificity, and biochemical properties of G1T28. Mol Cancer Ther . 2016 May;15(5):783-93.
  • G1T28 protects CDK4/6-dependent cells from chemotherapy-induced DNA damage and apoptosis in vitro. Mol Cancer Ther . 2016 May;15(5):783-93.
  • G1T28 inhibits cellular proliferation in bone marrow leading to chemoprotection in vivo. Mol Cancer Ther . 2016 May;15(5):783-93.
  • Cells that are CDK4/6 independent are RB null and G1T28 does not cause protection from chemotherapy treatment. Mol Cancer Ther . 2016 May;15(5):783-93.
Contact Us