Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
Vonoprazan (TAK-438) is a novel, orally bioavailable and potent P-CAB (potassium-competitive acid blocker) that reversibly inhibits H+/K+, ATPase with IC50 of 19 nM (pH 6.5), controls gastric acid secretion. It was approved in the Japanese market in February 2015. In cultured gastric glands, TAK-438 treatment resulted in a longer and stronger acid formation inhibition. The inhibition effect of TAK-438 on acid secretion seemed to be associated with gastric parietal cell physiology.
Targets |
H+/K+-ATPase (IC50 = 19 nM)
|
---|---|
ln Vitro |
Vonoprazan (0.1 nM-10 μM; 30 minutes) activates porcine gastric H+, K+-ATPase in a concentration-dependent manner [2]. Vonoprazan does not block Na+,K+-ATPase activity, even at doses 500 times greater than the IC50 values for gastric H+,K+-ATPase activity[2].
|
ln Vivo |
Rats' baseline and 2-deoxy-D-glucose (200 mg/kg; sc)-stimulated stomach acid production is totally inhibited by vonoprazan (1-4 mg/kg; po) at a dose of 4 mg/kg[2].
|
Enzyme Assay |
Proton Potassium Adenosine Triphosphatase (H+,K+-ATPase) Inhibitory Activity Test [1]
Accordinpg to the method of Wallmark et al., a gastric mucosal membrane microsomal fraction was prepared from the stomach of swine. First, the stomach was removed, washed with tap water, and immersed in 3 mol/L brine, and the surface of the mucosal membrane was wiped with a paper towel. The gastric mucosal membrane was detached, chopped, and homogenized in a 0.25 mol/L saccharose solution (pH 6.8) containing 1 mmol/L EDTA and 10 mmol/L tris-hydrochloric acid using polytron (Kinematica). The obtained homogenate was centrifuged at 20000g for 30 min and the supernatant was centrifuged at 100000g for 90 min. The precipitate was suspended in 0.25 mol/L saccharose solution, superimposed on a 0.25 mol/L saccharose solution containing 7.5% Ficoll, and centrifuged at 100000g for 5 h. The fraction containing the interface between the both layers was recovered, and centrifugally washed with 0.25 mol/L saccharose solution. The obtained microsomal fraction was used as a proton, potassium adenosine triphosphatase standard product. To 40 μL of a 50 mmol/L HEPES-Tris buffer (5 mmol/L magnesium chloride, 10 mmol/L potassium chloride, 10 μmol/L valinomycin, pH 6.5) containing 2.5 μg/mL (based on the protein concentration) of the enzyme standard product was added a test compound (5 μL) dissolved in a 10% aqueous dimethyl sulfoxide solution, and the mixture was incubated at 37 °C for 30 min. The enzyme reaction was started by adding 5 μL of a 2 mmol/L adenosine triphosphate Tris salt solution (50 mmol/L HEPES-Tris buffer (5 mmol/L magnesium chloride, pH 6.5)). The enzyme reaction was carried out at 37 °C for 20 min, and 15 μL of a malachite green solution (0.12% malachite green solution in sulfuric acid (2.5 mol/L), 7.5% ammonium molybdate, and 11% Tween 20 were mixed at a ratio of 100:25:2) was added to quench the reaction. After the mixture was allowed to stand at room temperature for 15 min, the resulting reaction product of inorganic phosphorus with malachite green was colorimetrically determined at a wavelength of 610 nm. In addition, the amount of the inorganic phosphoric acid in the reaction solution free of potassium chloride was measured in the same manner, which was subtracted from the inorganic phosphoric acid amount in the presence of potassium chloride to determine the H+,K+-ATPase activity. The inhibitory rate (%) was determined from the activity value of the control and the activity values of various concentrations of the test compound, and the 50% inhibitory concentration (IC50) of the H+,K+-ATPase activity was determined. |
Animal Protocol |
Animal/Disease Models: Male 7- or 8weeks old SD (Sprague-Dawley) rat[2]
Doses: 0.5 mg/kg, 1 mg/kg, 2 mg/kg, 4 mg/kg Route of Administration: Oral administration Experimental Results: Inhibited basal gastric acid secretion in a dose-dependent manner. Inhibiton of Histamine-Stimulated Acid Secretion in Anesthetized Rats (iv) [1] Seven-week-old male Jcl:Sprague Dawley (SD) rats were used. The animals were fasted for 24 h but had free access to water before the experiment. The pylorus was ligated after anesthetization with urethane (1.2 g/kg, ip), and the abdomen was closed. Drugs and the vehicle were given intravenously just after the pylorus ligation. Three minutes later, histamine·2HCl (30 mg/kg per 10 mL) was injected subcutaneously. Three hours after histamine administration, the rats were sacrificed by CO2 asphyxiation and the stomachs were removed. The gastric contents were collected and centrifuged at 3000 rpm for 10 min. The volume of each sample was measured and the acid concentration was determined by automatic titration to pH 7.0 with 0.1 mol/L NaOH, and the total acid output during the 3 h period (μequiv/(3 h)) was calculated. Histamine-Stimulated Acid Secretion in Heidenhain Pouch Dogs [1] Drugs and the vehicle were given orally (0.2 mL/kg) to the dogs in a blind manner. Histamine·2HCl (30 μg/kg) was injected subcutaneously 1 day before and 1, 3, 6, 24, and 48 h after drugs and the vehicle administration. The gastric juice from the pouch was collected continuously for three consecutive 30 min periods after each dosing with histamine·2HCl. The volume of gastric juice was measured, and the acid concentration was determined by automatic titration to pH 7.0 with 0.1 mol/L NaOH solution. The total acid output during the 90 min period (μequiv/(90 min)) from each time was calculated and expressed as a percentage of the predosing value measured 1 day before the administration. |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the clinical use of vonoprazan during breastfeeding. Because of liver damage that occurred in nursing rodents, the manufacturer recommends that nursing mothers should pump and discard human milk while taking and for 2 days after the last dose. An alternate drug may be preferred. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding In healthy subjects, the plasma protein binding of vonoprazan ranges from 85% to 88%. At plasma concentrations between 0.1 and 10 mcg/mL, the plasma protein binding of vonoprazan is independent of concentration. |
References |
|
Additional Infomation |
Vonoprazan Fumarate is the fumarate salt form of vonoprazan, a pyrrole derivative and reversible potassium-competitive acid blocker (P-CAB), with potential antacid activity. Upon administration, vonoprazan specifically and competitively binds to the gastric hydrogen-potassium ATPase (H+/K+ ATPase) proton pump at or, more likely, near its potassium ion (K+) binding site and sterically inhibits K+ binding. This blocks the activation of the H+/K+ ATPase by K+, inhibits the proton pump and prevents gastric acid secretion, thereby lowering gastric acid levels.
See also: Vonoprazan (has active moiety); Amoxicillin; clarithromycin; vonoprazan fumarate (component of); Amoxicillin; vonoprazan fumarate (component of). In our pursuit of developing a novel and potent potassium-competitive acid blocker (P-CAB), we synthesized pyrrole derivatives focusing on compounds with low log D and high ligand-lipophilicity efficiency (LLE) values. Among the compounds synthesized, the compound 13e exhibited potent H(+),K(+)-ATPase inhibitory activity and potent gastric acid secretion inhibitory action in vivo. Its maximum efficacy was more potent and its duration of action was much longer than those of proton pump inhibitors (PPIs). Therefore, compound 13e (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate, TAK-438) was selected as a drug candidate for the treatment of gastroesophageal reflux disease (GERD), peptic ulcer, and other acid-related diseases. [1] |
Molecular Formula |
C17H16FN3O2S
|
---|---|
Molecular Weight |
345.3912
|
Exact Mass |
345.094
|
Elemental Analysis |
C, 59.12; H, 4.67; F, 5.50; N, 12.17; O, 9.26; S, 9.28
|
CAS # |
881681-00-1
|
Related CAS # |
Vonoprazan Fumarate;881681-01-2;Vonoprazan hydrochloride;1957202-44-6
|
PubChem CID |
45375887
|
Appearance |
White to off-white solid powder
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
530.3±60.0 °C at 760 mmHg
|
Flash Point |
274.5±32.9 °C
|
Vapour Pressure |
0.0±1.4 mmHg at 25°C
|
Index of Refraction |
1.622
|
LogP |
2.74
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
32
|
Complexity |
629
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CNCC1=CN(C(=C1)C2=CC=CC=C2F)S(=O)(=O)C3=CN=CC=C3.C(=C/C(=O)O)\C(=O)O
|
InChi Key |
ROGSHYHKHPCCJW-WLHGVMLRSA-N
|
InChi Code |
InChI=1S/C17H16FN3O2S.C4H4O4/c1-19-10-13-9-17(15-6-2-3-7-16(15)18)21(12-13)24(22,23)14-5-4-8-20-11-14;5-3(6)1-2-4(7)8/h2-9,11-12,19H,10H2,1H3;1-2H,(H,5,6)(H,7,8)/b;2-1+
|
Chemical Name |
(E)-but-2-enedioic acid;1-[5-(2-fluorophenyl)-1-pyridin-3-ylsulfonylpyrrol-3-yl]-N-methylmethanamine
|
Synonyms |
Vonoprazan; 881681-00-1; TAK-438 free base; Vonoprazan [INN]; Vonoprazan free base; UNII-1R5L3J156G; Vonoprazan [USAN]; 1R5L3J156G;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~289.53 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.24 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (7.24 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (7.24 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8953 mL | 14.4764 mL | 28.9528 mL | |
5 mM | 0.5791 mL | 2.8953 mL | 5.7906 mL | |
10 mM | 0.2895 mL | 1.4476 mL | 2.8953 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.