yingweiwo

Xanthine

Alias: xanthine; 69-89-6; 2,6-Dihydroxypurine; 2,6-dioxopurine; 1H-Purine-2,6(3H,7H)-dione; Xanthin; Xanthic oxide; Pseudoxanthine;
Cat No.:V28248 Purity: ≥98%
Xanthine is a plant alkaloid found in tea, coffee, and cocoa that is a mild central nervous system activator.
Xanthine
Xanthine Chemical Structure CAS No.: 69-89-6
Product category: Endogenous Metabolite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
5g
10g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Xanthine is a plant alkaloid found in tea, coffee, and cocoa that is a mild central nervous system activator. Xanthine is also an intermediate in the purine degradation pathway.
Biological Activity I Assay Protocols (From Reference)
Targets
Purine base
ln Vitro
Caffeine and theobromine are among the many stimulants generated from Xanthine. Xanthine is the byproduct of the purine breakdown process. The enzyme Xanthine oxidase converts xanthine to uric acid.
ln Vivo
Caffeine is a xanthine alkaloid found in non-alcoholic beverages such as tea, coffee, and cocoa. It was discovered in tea and coffee in the 1820s, but it was not until 2000 that details of molecular events associated with caffeine biosynthesis began to be unraveled. Reviewed are the occurrence of xanthine alkaloids in the plant kingdom and the elucidation of the caffeine biosynthesis pathway, providing details of the N-methyltransferases, belonging to the motif B' methyltransferase family, which catalyze three steps in the four-step pathway leading from xanthosine to caffeine. Pathways for the metabolism and degradation of xanthine alkaloids are discussed, although as yet the genes and enzymes involved have not been isolated. This chapter also considers the in planta role of caffeine in chemical defense that has been demonstrated using transgenic caffeine-forming tobacco and chrysanthemum plants, which are resistant to attack by pathogens and herbivores. Finally, future research is considered that might lead to the production of naturally decaffeinated beverages and agricultural crops that contain elevated levels of "natural" pesticides[3].
Enzyme Assay
Xanthine (3,7-dihydro-purine-2,6-dione) is generated from guanine by guanine deaminase and hypoxanthine by xanthine oxidase (XOD). The determination of xanthine in meat indicates its freshness, while its level in serum/urine provides valuable information about diagnosis and medical management of certain metabolic disorders such as xanthinuria, hyperurecemia, gout and renal failure. Although chromatographic methods such a HPLC, capillary electrophoresis and mass spectrometry are available for quantification of xanthine in biological materials, these suffer from certain limitations such as complexity, time consuming sample preparation and requirement of expensive apparatus and trained persons to operate. Immobilized XOD based biosensors have emerged as simple, rapid, sensitive and economic tools for determination of xanthine in food industries and clinical diagnosis. This review article describes the various immobilization methods of XOD and different matrices used for construction of xanthine biosensors, their classification, analytical performance and applications along with their merits and demerits. The future perspectives for improvement of present xanthine biosensors are also discussed[1].
ADME/Pharmacokinetics
Metabolism / Metabolites
Xanthine is readily converted to uric acid. The enzyme xanthine oxidase makes uric acid from xanthine and hypoxanthine, which in turn are produced from other purines. In humans and higher primates, uric acid is the final oxidation (breakdown) product of purine metabolism and is excreted in urine.
Toxicity/Toxicokinetics
Toxicity Summary
Xanthine is a poorly soluble compound. As a result high concentrations of serum xanthine can lead to the formation of kidney stones (xanthine kidney stones) which can, over the long term, induce kidney failure.
References

[1]. Pundir CS, Devi R. Biosensing methods for xanthine determination: a review. Enzyme Microb Technol. 2014;57:55-62.

[2]. Central Nervous SystemStimulants.

[3]. Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. Prog Chem Org Nat Prod. 2017;105:1-88.

Additional Infomation
9H-xanthine is an oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. It has a role as a Saccharomyces cerevisiae metabolite. It is a tautomer of a 7H-xanthine.
A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed)
Xanthine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Xanthine has been reported in Eleutherococcus giraldii, Drosophila melanogaster, and other organisms with data available.
Xanthine is a purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed.).
Xanthine is a metabolite found in or produced by Saccharomyces cerevisiae.
A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C5H4N4O2
Molecular Weight
152.11
Exact Mass
152.033
Elemental Analysis
C, 39.48; H, 2.65; N, 36.83; O, 21.04
CAS #
69-89-6
PubChem CID
1188
Appearance
Typically exists as white to light yellow solids at room temperature
Density
1.6±0.1 g/cm3
Boiling Point
834.9ºC at 760 mmHg
Melting Point
300 °C
Flash Point
458.7ºC
Index of Refraction
1.636
LogP
-0.81
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
0
Heavy Atom Count
11
Complexity
217
Defined Atom Stereocenter Count
0
SMILES
O=C1C2=C(N=C([H])N2[H])N([H])C(N1[H])=O
InChi Key
LRFVTYWOQMYALW-UHFFFAOYSA-N
InChi Code
InChI=1S/C5H4N4O2/c10-4-2-3(7-1-6-2)8-5(11)9-4/h1H,(H3,6,7,8,9,10,11)
Chemical Name
3,7-dihydropurine-2,6-dione
Synonyms
xanthine; 69-89-6; 2,6-Dihydroxypurine; 2,6-dioxopurine; 1H-Purine-2,6(3H,7H)-dione; Xanthin; Xanthic oxide; Pseudoxanthine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
1M NaOH : 8.33 mg/mL (~54.76 mM)
H2O : ~5 mg/mL (~32.87 mM)
DMSO : ~3.33 mg/mL (~21.89 mM)
NH4OH: freely soluble
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.5742 mL 32.8709 mL 65.7419 mL
5 mM 1.3148 mL 6.5742 mL 13.1484 mL
10 mM 0.6574 mL 3.2871 mL 6.5742 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Effects of Xanthohumol on Metabolic Syndrome Progression
CTID: NCT03561116
Phase: N/A
Status: Unknown status
Date: 2018-06-19
Contact Us