yingweiwo

Zoliflodacin

Alias: Zoliflodacin; ETX0914; AZD-0914; ETX-0914; AZD0914; ETX 0914; AZD 0914; AZD0914; AZD-0914; Zoliflodacin [USAN]; FWL2263R77;
Cat No.:V4277 Purity: =98.88%
Zoliflodacin (formerly ETX-0914; AZD-0914; ETX0914; AZD0914) is a novel and potent spiropyrimidinetrione-based bacterial DNA gyrase/topoisomerase inhibitor.
Zoliflodacin
Zoliflodacin Chemical Structure CAS No.: 1620458-09-4
Product category: DNA(RNA) Synthesis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500μg
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
InvivoChem's Zoliflodacin has been cited by 1 publication
Purity & Quality Control Documentation

Purity: =98.88%

Product Description

Zoliflodacin (formerly ETX-0914; AZD-0914; ETX0914; AZD0914) is a novel and potent spiropyrimidinetrione-based bacterial DNA gyrase/topoisomerase inhibitor. Zoliflodacin exhibits strong in vitro antibacterial activity against both Gram-positive and Gram-negative bacteria, including S. aureus with the MIC90 of 0.25 μg/mL. With regard to important Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with documented fluoroquinolone resistance, AZD0914 exhibits strong in vitro antibacterial activity. In contrast to other commercially available antibacterial compounds, AZD0914 inhibits DNA biosynthesis and the accumulation of double-strand cleavages. Under permissive conditions, AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA, preventing the double-strand cleaved DNA from religating to form fused circular DNA. This mechanism is different in terms of mechanics even though it is comparable to that of fluoroquinolones. In S. aureus, AZD0914 showed low frequencies of spontaneous resistance; if mutants were obtained, they mapped to gyrB. Furthermore, AZD0914 did not exhibit any cross-resistance against recent clinical isolates of bacteria that were resistant to fluoroquinolones or other drug classes, such as glycopeptides, β-lactams, macrolides, and oxazolidinones. In vitro time-kill studies and minimum bactericidal concentration tests, AZD0914 demonstrated bactericidal activity. Only additivity or indifference was seen in in vitro checkerboard/synergy testing using 17 comparator antibacterials. AZD0914's low frequency of resistance, lack of cross-resistance, strong in vitro antibacterial activity (including activity against isolates resistant to fluoroquinolones), and bactericidal activity all contribute to its continued development.

Biological Activity I Assay Protocols (From Reference)
Targets
Quinolone antibiotic; DNA gyrase/topoisomerase
ln Vitro
Zoliflodacin (formerly ETX-0914; AZD-0914; ETX0914; AZD0914) possesses antibacterial activity against important fastidious Gram-negative (Haemophilus influenzae, Neisseria gonorrhoeae), atypical (Legionella pneumophila), anaerobic (Clostridium difficile), and Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae, Neisseria gonorrhoeae), and atypical (Legionella pneumophila) bacterial species, including isolates with documented fluoroquinolone resistance. The mechanism of action of Zoliflodacin is demonstrated to be different from that of other commercially available antibacterial compounds, such as fluoroquinolones, in that it inhibits DNA biosynthesis and accumulates double-strand cleavages, thereby exerting antibacterial activity. Under permissive conditions, zoliflodacin stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA, preventing the double-strand cleaved DNA from religating to form fused circular DNA[1].
ln Vivo
The Centers for Disease Control and the World Health Organization have issued a list of priority pathogens for which there are dwindling therapeutic options, including antibiotic-resistant Neisseria gonorrheae, for which novel oral agents are urgently needed. Zoliflodacin, the first in a new class of antibacterial agents called the spiropyrimidinetriones, is being developed for the treatment of gonorrhea. It has a unique mode of inhibition against bacterial type II topoisomerases with binding sites in bacterial gyrase that are distinct from those of the fluoroquinolones. Zoliflodacin is bactericidal, with a low frequency of resistance and potent antibacterial activity against N. gonorrheae, including multi-drug-resistant strains (MICs ranging from ≤0.002 to 0.25 μg/mL). Although being developed for the treatment of gonorrhea, zoliflodacin also has activity against Gram-positive, fastidious Gram-negative, and atypical pathogens. A hollow-fiber infection model using S. aureus showed that that pharmacokinetic/pharmacodynamic index of fAUC/MIC best correlated with efficacy in in vivo neutropenic thigh models in mice. This data and unbound exposure magnitudes derived from the thigh models were subsequently utilized in a surrogate pathogen approach to establish dose ranges for clinical development with N. gonorrheae. In preclinical studies, a wide safety margin supported progression to phase 1 studies in healthy volunteers, which showed linear pharmacokinetics, good oral bioavailability, and no significant safety findings. In a phase 2 study, zoliflodacin was effective in treating gonococcal urogenital and rectal infections. In partnership with the Global Antibiotic Research Development Program (GARDP), zoliflodacin is currently being studied in a global phase 3 clinical trial. Zoliflodacin represents a promising new oral therapy for drug-resistant infections caused by N. gonorrheae[2].
Enzyme Assay
AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development[1].
Cell Assay
The determination of the macrodilution MICs for zoliflodacin broth serves as the foundation for in vitro time-kill and postantibiotic-effect (PAE) assays. Using glass tubes (18 by 150 mm, without agitation), in vitro static time-kill studies are carried out with 10-mL volumes of cation-adjusted Mueller-Hinton broth containing logarithmically growing cultures (starting inoculum of 1×106 CFU/mL) against both levofloxacin-susceptible and levofloxacin-resistant S. aureus. The concentrations of zoliflodacin that are tested are 0.5, 1, 2, 4, and 8 times the minimum inhibitory concentration (MIC). Samples are plated for colony counts at 0, 2, 4, 6, 8, and 24 hours using 100 μL aliquots spotted onto 25-ml sheep blood agar plates according to the previously mentioned protocol. At the lowest drug concentration that decreased viable organism counts by ≥3 log10 in a 24-hour period, compounds are deemed bactericidal. Time-kill research is carried out in duplicate, with test results combined and mean values reported [1].
Animal Protocol
Until recently, the lack of a robust animal model for N. gonorrheae has hampered the ability to understand the PK/pharmacodynamic (PD) and exposure target for this pathogen. Successful colonization is often difficult to achieve and maintain within a therapeutic window due to spontaneous eradication in the host system, which limits the utility of this model in the evaluation of new antibiotics. In vitro dynamic model systems such as the hollow-fiber used to determine the PK/PD driver and evaluate clinic dose regimens have only recently shown successful use with N. gonorrheae. Current therapies and regimens utilized clinically have often relied upon anecdotal evidence provided by clinical use of available agents, demonstrating potent susceptibility to the pathogen. Due to the similarity in the mechanism of action of zoliflodacin to other market topoisomerase inhibitors that have successfully been used to treat gonorrhea, a surrogate pathogen approach with S. aureus was utilized for zoliflodacin. The translation of experimentally derived PK/PD targets was based upon the premise that unbound plasma targets obtained from reference targets in the murine models matched those associated with clinical efficacy. Although the PK/PD driver associated with topoisomerase inhibitors has historically been the area under the concentration curve (AUC)/MIC, this correlation was confirmed with zoliflodacin itself in a series of in vitro hollow-fiber experiments in which unbound drug concentration vs time profiles were simulated and dose fractionated to distinguish among PK/PD drivers of AUC/MIC, Cmax/AUC, and T > MIC. The results of this study utilizing a methicillin-susceptible strain of S. aureus (ARC516) demonstrated AUC/MIC to be the index most closely associated with the activity of zoliflodacin, [R2] = 0.95 (Figure 4).[2]
With the PK/PD driver established for zoliflodacin against S. aureus in the hollow-fiber model, assessment of the in vivo efficacy of zoliflodacin was established using a murine thigh infection model in both immunocompetent and immunosuppressed mice using a methicillin-susceptible strain of S. aureus (ARC516). Zoliflodacin was highly efficacious in a dose-dependent fashion for both mouse models. Stasis was achieved at an AUC of 20 μg·h/mL. Accounting for the protein binding of zoliflodacin in the mouse (81% bound), a maximum 3 log10 decrease in the CFU/g bacterial burden corresponded to an unbound AUC of 23 μg·h/mL for neutropenic animals. S. aureus ARC516 used for this study had a zoliflodacin MIC of 0.0625 μg/mL with an fAUC/MIC of 368 for >3 log10 kill. Additional S. aureus strains were studied in vivo in the neutropenic thigh infection model including MRSA strains ATCC 33591, USA100 NRS382, and USA300 NR538 in order to establish mean unbound exposure requirements associated with stasis and 1 log10 kill. From the combined in vivo data set, the fAUC/MIC values associated with stasis and 1 log10 kill were 66 and 139, respectively. These values were ultimately used as PK/PD-derived exposure targets for clinical dose justification. The PK/PD index of fAUC/MIC generated in the hollow fiber with zoliflodacin against S. aureus and unbound exposure magnitudes derived from in vivo neutropenic thigh models conducted in mice were subsequently utilized in the surrogate pathogen approach to help establish dose ranges for clinical development with N. gonorrheae. To support the approach, fAUC/MIC magnitudes associated with clinical doses to treat N. gonorrheae and skin infections caused by S. aureus were obtained for reference compounds ofloxacin and ciprofloxacin as shown in Table 6. [2]
References

[1]. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria. Antimicrob Agents Chemother. 2015 Jan;59(1):467-74.

[2]. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect. Dis. 2020, 6, 6, 1332–1345
Additional Infomation
Zoliflodacin has been used in trials studying the basic science and treatment of Gonorrhoea.
In response to the unmet medical need of multi-drug-resistant N. gonorrheae, zoliflodacin (formerly AZD0914, ETX0914), representing a new class of antibacterial agents called the spiropyrimidinetriones, was developed for the treatment of uncomplicated gonorrhea. Zoliflodacin is an orally bioavailable antibacterial agent that is bactericidal via a novel mechanism of action against bacterial type II topoisomerases. This review presents the preclinical and early clinical data that has been generated for this new oral antibiotic.[2]
Zoliflodacin, a novel spiropyrimidinetrione antibiotic, is being developed by Entasis Therapeutics for the treatment of uncomplicated gonorrhea and represents the first drug in a novel class of topoisomerase inhibitors. Because there is no cross-resistance with fluoroquinolones due to its unique mechanism of action, zoliflodacin could be effective in treating infections caused by fluoroquinolone-resistant strains of N. gonorrheae. This was supported by the safety and efficacy demonstrated during a phase 2 study. Entasis has partnered with the Global Antibiotic Research Development Program (GARDP) to continue the development of zoliflodacin, and the initiation of a global phase 3 study was recently announced (https://gardp.org/news-resources/gardp-and-entasis-therapeutics-initiate-global-phase-3-trial-of-zoliflodacin-a-first-in-class-oral-antibiotic-for-the-treatment-of-gonorrhoea/). This is an open-label trial comparing a single 3 g oral dose of zoliflodacin to a combination of ceftriaxone and azithromycin (2:1 randomization). Similar to the phase 2 study, the phase 3 trial has urogenital infections caused by N. gonorrheae as the criterion for enrollment. However, the presence of extraurogenital infections will also be studied as a secondary end point in the hope that this data will also inform us as to the utility of zoliflodacin in these infections. The clinical study is expected to include approximately 1000 adults with urogenital gonorrhea from sites in the United States, The Netherlands, Thailand, and South Africa (ClinicalTrials.gov identifier NCT03959527), and results are expected in 2021. As we move into the 2020s, a positive outcome of the trial would indicate that zoliflodacin could be used as an oral monotherapy for the treatment of gonorrhea.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H22N5O7F
Molecular Weight
487.438
Exact Mass
487.15
Elemental Analysis
C, 54.21; H, 4.55; F, 3.90; N, 14.37; O, 22.98
CAS #
1620458-09-4
PubChem CID
76685216
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Index of Refraction
1.685
LogP
1.3
tPSA
143Ų
SMILES
C[C@@H]1CN2[C@H]([C@@H](O1)C)C3(CC4=CC5=C(C(=C42)F)ON=C5N6[C@H](COC6=O)C)C(=O)NC(=O)NC3=O
InChi Key
ZSWMIFNWDQEXDT-ZESJGQACSA-N
InChi Code
InChI=1S/C22H22FN5O7/c1-8-7-33-21(32)28(8)17-12-4-11-5-22(18(29)24-20(31)25-19(22)30)16-10(3)34-9(2)6-27(16)14(11)13(23)15(12)35-26-17/h4,8-10,16H,5-7H2,1-3H3,(H2,24,25,29,30,31)/t8-,9+,10-,16+/m0/s1
Chemical Name
(4'R,6'S,7'S)-17'-fluoro-4',6'-dimethyl-13'-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]spiro[1,3-diazinane-5,8'-5,15-dioxa-2,14-diazatetracyclo[8.7.0.02,7.012,16]heptadeca-1(17),10,12(16),13-tetraene]-2,4,6-trione
Synonyms
Zoliflodacin; ETX0914; AZD-0914; ETX-0914; AZD0914; ETX 0914; AZD 0914; AZD0914; AZD-0914; Zoliflodacin [USAN]; FWL2263R77;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~140 mg/mL (~287.2 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.27 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.27 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.27 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0515 mL 10.2577 mL 20.5153 mL
5 mM 0.4103 mL 2.0515 mL 4.1031 mL
10 mM 0.2052 mL 1.0258 mL 2.0515 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03959527 Active
Recruiting
Drug: zoliflodacin
Drug: ceftriaxone
Gonorrhea Global Antibiotics Research
and Development Partnership
November 6, 2019 Phase 3
NCT03404167 Completed Drug: AZD0914 Gonorrhoea National Institute of Allergy
and Infectious Diseases (NIAID)
February 2, 2018 Phase 1
NCT03718806 Completed Other: high calorie, high fat
breakfast
Drug: Zoliflodacin
Gonorrhea Drugs for Neglected Diseases October 3, 2018 Phase 1
NCT05635305 Completed Drug: Zoliflodacin Patheon Healthy Volunteers Global Antibiotics Research
and Development Partnership
November 9, 2022 Phase 1
NCT02257918 Completed Drug: AZD0914
Drug: Ceftriaxone
Gonorrhoea National Institute of Allergy
and Infectious Diseases (NIAID)
November 25, 2014 Phase 2
Biological Data
Contact Us